Glutamate-induced changes in intracellular free Ca2+ concentration ([Ca2+]i) were recorded in single rat hippocampal neurons grown in primary culture by employing the Ca2+ indicator indo-1 and a dual-emission microfluorimeter. The [Ca2+]i was monitored in neurons exposed to 100 microM glutamate for 5 min and for an ensuing 3 hr period. Ninety-two percent (n = 64) of these neurons buffered the glutamate-induced Ca2+ load back to basal levels after removal of the agonist; thus, the majority of cells had not lost the ability to regulate [Ca2+]i at this time. However, following a variable delay, in 44% (n = 26) of the neurons that buffered glutamate-induced Ca2+ loads to basal levels, [Ca2+]i rose again to a sustained plateau and failed to recover. The changes in [Ca2+]i that occur during glutamate-induced delayed neuronal death can be divided into three phases: (1) a triggering phase during which the neuron is exposed to glutamate and the [Ca2+]i increases to micromolar levels, followed by (2) a latent phase during which the [Ca2+]i recovers to a basal level, and (3) a final phase that begins with a gradual rise in the [Ca2+]i that reaches a sustained plateau from which the neuron does not recover. This delayed Ca2+ overload phase correlated significantly with cell death. The same sequence of events was also observed in recordings from neuronal processes. The delayed Ca2+ increase and subsequent death were dependent upon the presence of extracellular Ca2+ during glutamate exposure. Calcium influx during the triggering phase resulted from the activation of both NMDA and non-NMDA receptors as indicated by studies using receptor antagonists and ion substitution. Treatment with TTX (1 microM) or removal of extracellular Ca2+ for a 30 min window following agonist exposure failed to prevent the delayed Ca2+ overload. The delayed [Ca2+]i increase could be reversed by removing extracellular Ca2+, indicating that it resulted from Ca2+ influx. The three phases defined by changes in the [Ca2+]i during glutamate-induced neuronal toxicity suggest three distinct targets to which neuroprotective agents may be directed.
1. Glutamate-evoked increases in intracellular free H+ concentration ([H+]i) were recorded from single rat hippocampal neurons grown in primary culture with carboxy SNARF-based dual emission microfluorimetry. The possibility that this acidification resulted from altered energy metabolism was investigated. 2. The response to 10 microM glutamate (delta pH = 0.41 +/- 0.14, mean +/- SD) was blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist CGS19755 (10 microM) and required extracellular Ca2+. 3. Substituting the metabolic inhibitor 2-deoxyglucose for glucose in the extracellular buffer prevented glutamate-induced acidification. 4. Ba2+, which carries charge through Ca2+ channels, including the Ca2+ uniporter on the inner mitochondrial membrane, substituted for Ca2+ in mediating glutamate-induced cytoplasmic acidification. 5. Microinjection of ruthenium red, a compound that blocks mitochondrial Ca2+ sequestration, significantly inhibited glutamate-induced acidification. 6. The mitochondrial uncoupler, carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP, 0.1 microM), mimicked and partially occluded the glutamate-induced [H+]i increase. 7. These findings indicate that glutamate-induced Ca2+ loads are sequestered by mitochondria, uncouple respiration, and produce metabolic acidosis. The glutamate-induced acidification is symptomatic of metabolic stress and may indicate that mitochondria play an important role in glutamate-induced neuronal death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.