The thermal-induced and photoinduced valence tautomerism of a series of Co(dioxolene)(2)(4-X-py)(2) complexes (dioxolene = 3,5-di-tert-butylcatecholate or 3,5-di-tert-butylsemiquinonate; 4-X-py = 4-(X)pyridine, X = H (1), OMe (2), Me (3), CN (4), Br (5), NO(2) (6)) is described. The thermal valence tautomerism (ls-Co(III)(SQ)(Cat)(4-X-py)(2) <--> hs-Co(II)(SQ)(SQ)(4-X-py)(2)) is only observed for complexes 4, 5, and 6 where each is accompanied by a hysteresis loop of ca. 5 K. When a crystalline sample of 4-6 is held at 10 K in a SQUID magnetometer and irradiated with white light (lambda = 400-850 nm), the hs-Co(II) tautomer is formed. When the light source is removed, and the sample is slowly heated, the hs-Co(II) tautomer persists until ca. 90 K, approximately 40 K higher than the thermal stability of previously reported complexes. Heating and cooling the sample while maintaining irradiation results in the appearance of a new light-induced thermal hysteresis loop below 90 K (DeltaT = ca. 25 K). Below 50 K, the hs-Co(II) tautomer displays temperature-independent relaxation to the ls-Co(III) form, and above 50 K, the relaxation is thermally activated with an activation energy E(a) > ca. 1500 cm(-1). The coordination geometry (trans-pyridines), pyridine substitution, and crystal packing forces conspire to create the comparatively thermally stable photogenerated hs-Co(II) tautomer, thus providing an excellent handle for molecular and crystal engineering studies.
The thermal- and photoinduced valence tautomerism of a cobalt bis(dioxolene) complex is described. The thermal conversion is precipitous, complete within 10 K, and is accompanied by a 5 K hysteresis loop (107 K < T(1/2) < 112 K). Rapid thermal quenching (300 K --> 10 K in ca. 5 s) and photoinduced valence tautomerism result in trapping of the metastable Co(II)-state at low temperatures through intermolecular hydrogen bonding. This lattice stabilization results in unmatched kinetic and thermal stability for a valence tautomer from 10-50 K, with residual hs-Co(II) persisting until about 90 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.