Nonvolatile memory devices using gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) sheets were fabricated in both horizontal and vertical structures. The horizontal memory device, in which a singly and doubly overlayered semiconducting rGO channel was formed by simply using a spin-casting technique to connect two gold electrodes, was designed for understanding the origin of charging effects. AuNPs were chemically bound to the rGO channel through a π-conjugated molecular linker. The π-conjugated bifunctional molecular linker, 4-mercapto-benzenediazonium tetrafluoroborate (MBDT) salt, was newly synthesized and used as a molecular bridge to connect the AuNPs and rGOs. By using a self-assembly technique, the diazonium functional group of the MBDT molecular linker was spontaneously immobilized on the rGOs. Then, the monolayered AuNPs working as capacitors were covalently connected to the thiol groups of the MBDT molecules, which were attached to rGOs (AuNP-frGO). These covalent bonds were confirmed by XPS analyses. The current-voltage characteristics of both the horizontal and vertical AuNP-frGO memory devices showed noticeable nonlinear hysteresis, stable write-multiple read-erase-multiple read cycles over 1000 s, and a long retention time over 700 s. In addition, the vertical AuNP-frGO memory device showed a large current ON/OFF ratio and high stability.
Recently, the number of studies concerning organic memory devices has grown rapidly due to increase in the demand for electronic devices. Among the organic memory devices, the development of organic nonvolatile memory materials and devices is becoming an important research topic due to their low power consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.