The steroid hormone receptors are characterized by binding to relatively rigid, inflexible endogenous steroid ligands. Other members of the nuclear receptor superfamily bind to conformationally flexible lipids and show a corresponding degree of elasticity in the ligand-binding pocket. Here, we report the X-ray crystal structure of the oestrogen receptor a (ERa) bound to an oestradiol derivative with a prosthetic group, ortho-trifluoromethlyphenylvinyl, which binds in a novel extended pocket in the ligand-binding domain. Unlike ER antagonists with bulky side groups, this derivative is enclosed in the ligand-binding pocket, and acts as a potent agonist. This work shows that steroid hormone receptors can interact with a wider array of pharmacophores than previously thought through structural plasticity in the ligand-binding pocket.
As part of our program to develop probes for the hormone binding domain of the estrogen receptor alpha (ERalpha), we prepared a series of 4-para-substituted phenylvinyl estradiol derivatives using a combination of solution and solid-phase Pd(0)-catalyzed methods. The compounds 5a-j were evaluated for their binding affinity using the ERalpha hormone binding domain (HDB) isolated from transfected BL21 cells. The results indicated that although the new compounds were somewhat lower in relative binding affinity (RBA at 25 degrees C is 1-60%) than estradiol (100%), most had higher affinity than the unsubstituted parent phenylvinyl estradiol (RBA = 9%). Because the substituents did not generate a structure-activity relationship directly based on physicochemical properties, the series was evaluated using molecular modeling and molecular dynamics to determine key interactions between the ligand, especially the para substituent, and the protein. The results suggest that the observed relative binding affinities are directly related to the calculated binding energies and that amino acids juxtaposed to the para position play a significant but not dominant role in binding. In conclusion, we have identified the 17alpha-E-(4-substituted phenyl)vinyl estradiols as a class of ligands that retain significant affinity for the ERalpha-HBD. In particular, 4-substitution tends to increase receptor affinity compared to the unsubstituted analogue, as exemplified by 5e (4-COCH(3)), which had the highest RBA value (60%) of the series. Palladium(0)-catalyzed coupling reactions on solid support or in solution using suitably substituted iodo arenes and 17alpha-E-tributylstannylvinyl estradiols offer a flexible approach to their preparation. Molecular modeling studies of the receptor suggest that there exists additional ligand accessible regions within the ERalpha-HBD to generate interactions that may enhance receptor affinity or modify efficacy in developing new therapeutic agents. Studies to undertake modification in the properties and/or position of the aryl substituents in subsequent series to further define that role are in progress.
In this study we have introduced the 11beta-methoxy group, a substituent known to increase in vivo potency in other steroidal estrogens, into the (17alpha,20E)-21-(trifluoromethylphenyl)-19-norpregna-1,3,5(10),20-tetraene-3,17beta-diols: (trifluoromethylphenyl)vinyl estradiols. Receptor binding, using the ERalpha-HBD, indicated that the 11beta-methoxy group had little effect on the relative binding affinity of the target compounds compared to the corresponding 11beta-unsubstituted analogs, however, the 11beta-methoxy derivatives were significantly more potent in stimulating uterotrophic growth in immature female rats. Molecular modeling studies suggest that while the 11beta-methoxy group does not contribute significantly to the overall binding energy of the ligand-ERalpha-HBD complex, it stabilizes residues associated with the coregulator protein binding site. Such effects would influence the dynamics of subsequent events, such as transcription and biological responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.