As part of our program to develop probes for the hormone binding domain of the estrogen receptor alpha (ERalpha), we prepared a series of 4-para-substituted phenylvinyl estradiol derivatives using a combination of solution and solid-phase Pd(0)-catalyzed methods. The compounds 5a-j were evaluated for their binding affinity using the ERalpha hormone binding domain (HDB) isolated from transfected BL21 cells. The results indicated that although the new compounds were somewhat lower in relative binding affinity (RBA at 25 degrees C is 1-60%) than estradiol (100%), most had higher affinity than the unsubstituted parent phenylvinyl estradiol (RBA = 9%). Because the substituents did not generate a structure-activity relationship directly based on physicochemical properties, the series was evaluated using molecular modeling and molecular dynamics to determine key interactions between the ligand, especially the para substituent, and the protein. The results suggest that the observed relative binding affinities are directly related to the calculated binding energies and that amino acids juxtaposed to the para position play a significant but not dominant role in binding. In conclusion, we have identified the 17alpha-E-(4-substituted phenyl)vinyl estradiols as a class of ligands that retain significant affinity for the ERalpha-HBD. In particular, 4-substitution tends to increase receptor affinity compared to the unsubstituted analogue, as exemplified by 5e (4-COCH(3)), which had the highest RBA value (60%) of the series. Palladium(0)-catalyzed coupling reactions on solid support or in solution using suitably substituted iodo arenes and 17alpha-E-tributylstannylvinyl estradiols offer a flexible approach to their preparation. Molecular modeling studies of the receptor suggest that there exists additional ligand accessible regions within the ERalpha-HBD to generate interactions that may enhance receptor affinity or modify efficacy in developing new therapeutic agents. Studies to undertake modification in the properties and/or position of the aryl substituents in subsequent series to further define that role are in progress.
Differences in agonist responses of the novel estrogen receptor ligands (17alpha,20Z)-(p-methoxyphenyl)vinyl estradiol (1), (17alpha, 20Z)-(o-alpha,alpha,alpha-trifluoromethylphenyl)vinyl estradiol (2), and (17alpha,20Z)-(o-hydroxymethylphenyl)vinyl estradiol (3) led us to investigate their solution conformation. In competitive binding assay studies, we observed that several phenyl-substituted (17alpha, 20E/Z)-(X-phenyl)vinyl estradiols exhibited significant estrogen receptor binding, but with variation (RBA (1) = 20; RBA (2) = 23; RBA (3) = 140 where estradiol RBA = 100) depending on the phenyl substitution pattern. Because the 17alpha-phenylvinyl substituent interacts with the key helix-12 of the ligand binding domain, we considered that differences in the preferred conformation of 1-3 could account for their varying binding affinity. 2D NMR experiments at 500 MHz allowed the complete assignment of the (13)C and (1)H spectra of 1-3. The conformations of these compounds in solution were established by 2D and 1D NOESY spectroscopy. A statistical approach of evaluating contributing conformers of 1-3 from predicted (13)C shifts correlated quite well with the NOE data. The 17alpha substituents of 1 and 2 exist in similar conformational equilibria with some differences in relative populations of conformers. In contrast, the 17alpha substituent of 3 exists in a different conformational equilibrium. The similarity in solution conformations of 1 and 2 suggests they occupy a similar receptor volume, consistent with similar RBA values of 20 and 23. Conversely, the different conformational equilibria of 3 may contribute to the significant binding affinity (RBA = 140) of this ligand.
As part of our ongoing program to develop probes for the hormone binding domain of the estrogen receptor-alpha (ERalpha), we prepared and evaluated a series of 17alpha,Z-(4-substituted-phenyl)vinyl estradiol derivatives. The results indicated that the relative binding affinities (RBAs) at 25 degrees C for the new compounds were significant (RBA = 9-57) although less than that of estradiol (RBA = 100) or of the parent unsubstituted phenylvinyl estradiol (RBA = 66). All of the Z-compounds were full agonists in the uterotrophic assay, indicating that the ligands formed estrogen-like complexes with the estrogen receptor-alpha hormone binding domain (ERalpha-HBD). Comparison of corresponding Z- and E-4-substituted phenylvinyl ligands complexed with the ERalpha-HBD indicated small but significant differences in binding modes that may account for the differing trends seen in the structure-activity relationships for the two series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.