Lithium-ion (Li-ion) batteries that rely on cationic redox reactions are the primary energy source for portable electronics. One pathway toward greater energy density is through the use of Li-rich layered oxides. The capacity of this class of materials (>270 milliampere hours per gram) has been shown to be nested in anionic redox reactions, which are thought to form peroxo-like species. However, the oxygen-oxygen (O-O) bonding pattern has not been observed in previous studies, nor has there been a satisfactory explanation for the irreversible changes that occur during first delithiation. By using Li2IrO3 as a model compound, we visualize the O-O dimers via transmission electron microscopy and neutron diffraction. Our findings establish the fundamental relation between the anionic redox process and the evolution of the O-O bonding in layered oxides.
Li-S rechargeable batteries are attractive for electric transportation because of their low cost, environmentally friendliness, and superior energy density. However, the Li-S system has yet to conquer the marketplace, owing to its drawbacks, namely, soluble polysulfide formation. To tackle this issue, we present here a strategy based on the use of a mesoporous chromium trimesate metal-organic framework (MOF) named MIL-100(Cr) as host material for sulfur impregnation. Electrodes containing sulfur impregnated within the pores of the MOF were found to show a marked increase in the capacity retention of Li-S cathodes. Complementary transmission electron microscopy and X-ray photoelectron spectroscopy measurements demonstrated the reversible capture and release of the polysulfides by the pores of MOF during cycling and evidenced a weak binding between the polysulphides and the oxygenated framework. Such an approach was generalized to other mesoporous oxide structures, such as mesoporous silica, for instance SBA-15, having the same positive effect as the MOF on the capacity retention of Li-S cells. Besides pore sizes, the surface activity of the mesoporous additives, as observed for the MOF, appears to also have a pronounced effect on enhancing the cycle performance. Increased knowledge about the interface between polysulfide species and oxide surfaces could lead to novel approaches in the design and fabrication of long cycle life S electrodes.
Polyoxyanion compounds, particularly the olivine-phosphate LiFePO 4 , are receiving considerable attention as alternative cathodes for rechargeable lithium batteries. More recently, an entirely new class of polyoxyanion cathodes based on the orthosilicates, Li 2 MSiO 4 (where M ¼ Mn, Fe, and Co), has been attracting growing interest. In the case of Li 2 FeSiO 4 , iron and silicon are among the most abundant and lowest cost elements, and hence offer the tantalising prospect of preparing cheap and safe cathodes from rust and sand! This Highlight presents an overview of recent developments and future challenges of silicate cathode materials focusing on their structural polymorphs, electrochemical behaviour and nanomaterials chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.