In 2005, the American Chemical Society (ACS) Green Chemistry Institute (GCI) and global pharmaceutical companies established the ACS GCI Pharmaceutical Roundtable to encourage the integration of green chemistry and engineering into the pharmaceutical industry. The Roundtable developed a list of key research areas in green chemistry in 2007, which has served as a guide for focusing green chemistry research. Following that publication, the Roundtable companies have identified a list of the key green engineering research areas that is intended to be the required companion of the first list. This publication summarizes the process used to identify and agree on the top key green engineering research areas and describes these areas, highlighting their research challenges and opportunities for improvements from the perspective of the pharmaceutical industry.
An evaluation of measured and predicted concentrations of 17-ethinylestradiol in surface waters of the United States and Europe was conducted to develop expected long-term exposure concentrations for this compound. Measured environmental concentrations (MECs) in surface waters were identified from the literature. Predicted environmental concentrations (PECs) were generated for European and U.S. watersheds using the GREAT-ER and PhATE models, respectively. The majority of MECs are nondetect and generally consistent with model PECs and conservative mass balance calculations. However, the highest MECs are not consistent with concentrations derived from conservative (worst-case) mass balance estimates or model PECs. A review of analytical methods suggests that tandem or high-resolution mass spectrometry methods with extract cleanup result in lower detection limits and lower reported concentrations consistent with model predictions and bounding estimates. Based on model results using PhATE and GREAT-ER, the 90th-percentile low-flow PECs in surface water are approximately 0.2 and 0.3 ng/L for the United States and Europe, respectively. These levels represent conservative estimates of long-term exposure that can be used for risk assessment purposes. Our analysis also indicates that average concentrations are one to two orders of magnitude lower than these 90th-percentile estimates. Higher reported concentrations (e.g., greater than the 99th-percentile PEC of approximately 1 ng/L) could result from methodological problems or unusual environmental circumstances; however, such concentrations are not representative of levels generally found in the environment, warrant special scrutiny, and are not appropriate for use in risk assessments of long-term exposures.
A set of metrics has been developed which enables a simple assessment to be made of batch processes in terms of waste, energy usage, and chemistry efficiency. It is intended to raise awareness of green chemistry by providing a tool to assist chemists in monitoring progress in the reduction of environmental impact as they design new routes and modify processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.