The high‐grade rocks of the Southern Granulite Terrain (SGT) of Peninsular India are bounded to the north by the Archean Dharwar Craton. Another high‐grade terrane, the Mesoproterozoic Eastern Ghats, occurs to the northeast of the SGT. The tectonic relationship between these crustal domains is complex. We present new geochronological and structural data that indicate a continuation of the Dharwar Craton into the Southern Granulite Terrain as far south as a newly identified Neoproterozoic shear zone, here named the Karur‐Kamban‐Painavu‐Trichur Shear Zone (KKPTSZ). South of the KKPTSZ, Mesoproterozoic dates of the SGT are similar to those recorded in the Eastern Ghats, and the two domains may have been conterminous. Thirty‐three new U/Pb/Th single zircon and monazite dates of samples from six structural transects across the regional shear zones indicate that the SGT has experienced at least seven thermo‐tectonic events at 2.5 Ga, ∼2.0 Ga, ∼1.6 Ga, ∼1.0 Ga, ∼800 Ma, ∼600 Ma, and ∼550 Ma, and two distinct episodes of metasomatism/charnockitization between 2.50–2.53 and between 0.55–0.53 Ga. Deformation along a number of major shear zones in the SGT is Neoproterozoic to earliest Paleozoic in age, with an early phase (D2) concentrated between 700–800 Ma, and a later phase (D3) between 550 and 600 Ma. Major charnockitization (530–550 Ma) post dates D3, and is, in turn, overprinted by granitization, retrogression, and uplift between 525 and 480 Ma. The KKPTSZ, active between 560 and 570 Ma, is either a terrane boundary, or a tectonized décollement between cover and Archean basement rocks represented by predominantly paragneisses to the south and orthogneisses to the north, respectively. Other regional Neoproterozoic shear zones do not appear to separate allochthonous terranes as previously suggested on the basis of Nd model ages and Rb/Sr biotite/whole rock dates. The Neoproterozoic‐Cambrian tectonothermal history of the SGT and Eastern Ghats is similar to that recorded in parts of Madagascar, East Africa, and Antarctica, and is used to reconstruct parts of central Gondwana, here named the Deccan Continent, with more robust confidence.