Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.
Long nanoscale gaps on III-V substrates by electron beam lithography J. Vac. Sci. Technol. B 30, 06F305 (2012); 10.1116/1.4766881 Tilted nanostructure fabrication by electron beam lithography J. Vac. Sci. Technol. B 30, 06F302 (2012); 10.1116/1.4754809 Electron beam lithography on vertical side faces of micrometer-order Si blockThe authors investigate the influence of anticharging conductive layers on electron beam lithography (EBL) nanopatterning of polymethyl methacrylate (PMMA) resist on fused silica substrates both experimentally and numerically. They report simulations of EBL exposure and development accounting for the effects of different anticharging layers on top of PMMA resist and compare the predicted and fabricated nanopatterns on fused silica and on silicon substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.