Estimating trends in abundance from fishery catch rates is one of the oldest endeavors in fisheries science. However, many jurisdictions do not analyze fishery catch rates due to concerns that these data confound changes in fishing behavior (adjustments in fishing location or gear operation) with trends in abundance. In response, we developed a spatial dynamic factor analysis (SDFA) model that decomposes covariation in multispecies catch rates into components representing spatial variation and fishing behavior. SDFA estimates spatiotemporal variation in fish density for multiple species and accounts for fisher behavior at large spatial scales (i.e., choice of fishing location) while controlling for fisher behavior at fine spatial scales (e.g., daily timing of fishing activity). We first use a multispecies simulation experiment to show that SDFA decreases bias in abundance indices relative to ignoring spatial adjustments and fishing tactics. We then present results for a case study involving petrale sole (Eopsetta jordani) in the California Current, for which SDFA estimates initially stable and then increasing abundance for the period 1986–2003, in accordance with fishery-independent survey and stock assessment estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.