A fire exposure test was conducted on a 72.4 liter composite (Type HGV-4) hydrogen fuel tank at an initial hydrogen pressure of 34.3 MPa (ca 5000 psi). No Pressure Relief Device was installed on the tank to ensure catastrophic failure for analysis. The cylinder ruptured at 35.7 MPa after a 370 kW fire exposure for 6 min 27 seconds. Blast wave pressures measured along a line perpendicular to the cylinder axis were 18% to 25% less the values calculated from ideal blast wave correlations using a blast energy of 13.4 MJ, which is based on the ideal gas internal energy at the 35.7 MPa burst pressure. The resulting hydrogen fireball maximum diameter of 7.7 m is about 19% less than the value predicted from existing correlations using the 1.64 kg hydrogen mass in the tank.
An analysis is presented of laminar fully developed flow in a curved tube of circular cross-section under the influence of a pressure gradient oscillating sinusoidally in time. The governing equations are linearized by an expansion valid for small values of the parameter (a/R) [Ka/ων]2, where a is the radius of the tube cross-section, R is the radius of curvature, ν is the kinematic viscosity of the fluid and K and ω are the amplitude and frequency, respectively, of the pressure gradient. A solution involving numerical evaluation of finite Hankel transforms is obtained for arbitrary values of the parameter α = a(ω/ν)½. In addition, closed-form analytic solutions are derived for both small and large values of α. The secondary flow is found to consist of a steady component and a component oscillatory at a frequency 2ω, while the axial velocity perturbation oscillates at ω and 3ω. The small-α flow field is similar to the low Dean number steady flow configuration, whereas the large-α flow field is altered and includes secondary flow directed towards the centre of curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.