An analysis is presented of laminar fully developed flow in a curved tube of circular cross-section under the influence of a pressure gradient oscillating sinusoidally in time. The governing equations are linearized by an expansion valid for small values of the parameter (a/R) [Ka/ων]2, where a is the radius of the tube cross-section, R is the radius of curvature, ν is the kinematic viscosity of the fluid and K and ω are the amplitude and frequency, respectively, of the pressure gradient. A solution involving numerical evaluation of finite Hankel transforms is obtained for arbitrary values of the parameter α = a(ω/ν)½. In addition, closed-form analytic solutions are derived for both small and large values of α. The secondary flow is found to consist of a steady component and a component oscillatory at a frequency 2ω, while the axial velocity perturbation oscillates at ω and 3ω. The small-α flow field is similar to the low Dean number steady flow configuration, whereas the large-α flow field is altered and includes secondary flow directed towards the centre of curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.