Cheap and safe: The catalytic efficiency of a light‐dependent photoenzyme (NADPH: protochlorophyllide oxidoreductase) is investigated as a function of the excitation wavelength (see picture). It becomes evident that “red” photons are more efficiently utilized in enzyme catalysis than “blue” photons. This shows an adaptation of the enzyme activity to the natural light conditions.
The structure and Franck-Condon region of protochlorophyllide a, a precursor in the biosynthesis of chlorophyll and substrate of the light-regulated enzyme protochlorophyllide oxidoreductase (POR), were investigated by Raman and resonance Raman (RR) spectroscopy. The spectroscopic results are compared to the spectra of the structurally closely related porphyrin model compound magnesium octaethylporphyrin (MgOEP), and interpreted on the basis of density functional theory (DFT) calculations. It is shown that the electronic properties of the two porphyrin macrocycles are affected by different vibrational coupling modes, resulting in a higher absorption cross section of protochlorophyllide a in the visible spectral region. Furthermore, a comparison of the Fourier transform (FT)-Raman and RR spectra of protochlorophyllide a indicates the modes that are resonantly enhanced upon excitation. Based on vibrational normal mode calculations, these modes include C-C ring-breathing and C C stretching vibrations of the porphyrin macrocycle. In particular, the strong band at 1703 cm −1 can be attributed to the C O carbonyl vibration of the cyclopentanone ring, which is attached in conjugation to the π-electron path of the porphyrin ring system. The enhancement of that mode upon electronically resonant excitation is discussed in the light of the reaction model suggested for the photoreduction of protochlorophyllide a in the POR.
The light-driven NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme of chlorophyll biosynthesis in angiosperms. POR's unique requirement for light to become catalytically active makes the enzyme an attractive model to study the dynamics of enzymatic reactions in real time. Here, we use picosecond time-resolved fluorescence and femtosecond pump-probe spectroscopy to examine the influence of the protein environment on the excited-state dynamics of the substrate, protochlorophyllide (PChlide), in the enzyme/substrate (PChlide/POR) and pseudoternary complex including the nucleotide cofactor NADP(+) (PChlide/NADP(+)/ POR). In comparison with the excited-state processes of unbound PChlide, the lifetime of the thermally equilibrated S(1) excited state is lengthened from 3.4 to 4.4 and 5.4 ns in the PChlide/POR and PChlide/NADP(+)/POR complex, whereas the nonradiative rates are decreased by ∼30 and 40%, respectively. This effect is most likely due to the reduced probability of nonradiative decay into the triplet excited state, thus keeping the risk of photosensitized side reactions in the enzyme low. Further, the initial reaction path involves the formation of an intramolecular charge-transfer state (S(ICT)) as an intermediate product. From a strong blue shift in the excited-state absorption, it is concluded that the S(ICT) state is stabilized by local interactions with specific protein sites in the catalytic pocket. The possible relevance of this result for the catalytic reaction in the enzyme POR is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.