Spatially distributed surface temperature is an important, yet difficult to observe, variable for physical glacier melt models. We utilize ground‐based thermal infrared imagery to obtain spatially distributed surface temperature data for alpine glaciers. The infrared images are used to investigate thermal microscale processes at the glacier surface, such as the effect of surface cover type and the temperature gradient at the glacier margins on the glacier's temperature dynamics. Infrared images were collected at Cuchillacocha Glacier, Cordillera Blanca, Peru, on 23–25 June 2014. The infrared images were corrected based on ground truth points and local meteorological data. For the control points, the Pearson's correlation coefficient between infrared and station temperatures was 0.95. The ground‐based infrared camera has the potential for greatly improving glacier energy budget studies, and our research shows that it is critical to properly correct the thermal images to produce robust, quantifiable data.
Peruvian glaciers are important contributors to dry season runoff for agriculture and hydropower, but they are at risk of disappearing due to climate change. We applied a physically based, energy balance melt model at five on‐glacier sites within the Peruvian Cordilleras Blanca and Vilcanota. Net shortwave radiation dominates the energy balance, and despite this flux being higher in the dry season, melt rates are lower due to losses from net longwave radiation and the latent heat flux. The sensible heat flux is a relatively small contributor to melt energy. At three of the sites the wet season snowpack was discontinuous, forming and melting within a daily to weekly timescale, and resulting in highly variable melt rates closely related to precipitation dynamics. Cold air temperatures due to a strong La Niña year at Shallap Glacier (Cordillera Blanca) resulted in a continuous wet season snowpack, significantly reducing wet season ablation. Sublimation was most important at the highest site in the accumulation zone of the Quelccaya Ice Cap (Cordillera Vilcanota), accounting for 81% of ablation, compared to 2%–4% for the other sites. Air temperature and precipitation inputs were perturbed to investigate the climate sensitivity of the five glaciers. At the lower sites warmer air temperatures resulted in a switch from snowfall to rain, so that ablation was increased via the decrease in albedo and increase in net shortwave radiation. At the top of Quelccaya Ice Cap warming caused melting to replace sublimation so that ablation increased nonlinearly with air temperature.
Runoff from glacierised Andean river basins is essential for sustaining the livelihoods of millions of people. By running a high-resolution climate model over the two most glacierised regions of Peru we unravel past climatic trends in precipitation and temperature. Future changes are determined from an ensemble of statistically downscaled global climate models. Projections under the high emissions scenario suggest substantial increases in temperature of 3.6 °C and 4.1 °C in the two regions, accompanied by a 12% precipitation increase by the late 21st century. Crucially, significant increases in precipitation extremes (around 75% for total precipitation on very wet days) occur together with an intensification of meteorological droughts caused by increased evapotranspiration. Despite higher precipitation, glacier mass losses are enhanced under both the highest emission and stabilization emission scenarios. Our modelling provides a new projection of combined and contrasting risks, in a region already experiencing rapid environmental change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.