Improving the prediction of chemical toxicity is a goal common to both environmental health research and pharmaceutical drug development. To improve safety detection assays, it is critical to have a reference set of molecules with well-defined toxicity annotations for training and validation purposes. Here, we describe a collaboration between safety researchers at Pfizer and the research team at the Comparative Toxicogenomics Database (CTD) to text mine and manually review a collection of 88 629 articles relating over 1 200 pharmaceutical drugs to their potential involvement in cardiovascular, neurological, renal and hepatic toxicity. In 1 year, CTD biocurators curated 2 54 173 toxicogenomic interactions (1 52 173 chemical–disease, 58 572 chemical–gene, 5 345 gene–disease and 38 083 phenotype interactions). All chemical–gene–disease interactions are fully integrated with public CTD, and phenotype interactions can be downloaded. We describe Pfizer’s text-mining process to collate the articles, and CTD’s curation strategy, performance metrics, enhanced data content and new module to curate phenotype information. As well, we show how data integration can connect phenotypes to diseases. This curation can be leveraged for information about toxic endpoints important to drug safety and help develop testable hypotheses for drug–disease events. The availability of these detailed, contextualized, high-quality annotations curated from seven decades’ worth of the scientific literature should help facilitate new mechanistic screening assays for pharmaceutical compound survival. This unique partnership demonstrates the importance of resource sharing and collaboration between public and private entities and underscores the complementary needs of the environmental health science and pharmaceutical communities.Database URL: http://ctdbase.org/
Abstract. Within the scientific literature, tables are commonly used to present factual and statistical information in a compact way, which is easy to digest by readers. The ability to "understand" the structure of tables is key for information extraction in many domains. However, the complexity and variety of presentation layouts and value formats makes it difficult to automatically extract roles and relationships of table cells. In this paper, we present a model that structures tables in a machine readable way and a methodology to automatically disentangle and transform tables into the modelled data structure. The method was tested in the domain of clinical trials: it achieved an F-score of 94.26% for cell function identification and 94.84% for identification of inter-cell relationships.
The scientific literature is growing exponentially, and professionals are no more able to cope with the current amount of publications. Text mining provided in the past methods to retrieve and extract information from text; however, most of these approaches ignored tables and figures. The research done in mining table data still does not have an integrated approach for mining that would consider all complexities and challenges of a table. Our research is examining the methods for extracting numerical (number of patients, age, gender distribution) and textual (adverse reactions) information from tables in the clinical literature. We present a requirement analysis template and an integral methodology for information extraction from tables in clinical domain that contains 7 steps: (1) table detection, (2) functional processing, (3) structural processing, (4) semantic tagging, (5) pragmatic processing, (6) cell selection and (7) syntactic processing and extraction. Our approach performed with the F-measure ranged between 82 and 92%, depending on the variable, task and its complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.