Summary1. Species richness is a state variable of some interest in monitoring programmes but raw species counts are often biased due to imperfect species detectability. Therefore, monitoring programmes should quantify detectability for target taxa to assess whether it varies over temporal or spatial scales. We assessed the potential for tropical bat monitoring programmes to reliably estimate trends in species richness. 2. Using data from 25 bat assemblages from the Old and New World tropics, we estimated detectability for all species in an assemblage (mean proportion of species detected per sampling plot) and for individual species (species-specific detectability). We further assessed how these estimates of detectability were affected by external sources of variation relating to time, space, survey effort and biological traits. 3. The mean proportion of species detected across 96 sampling plots was estimated at 0AE76 (range 0AE57-1AE00) and was significantly greater for phytophagous than for animalivorous species. Species-*Correspondence author. E-mail: cmeyer@fc.ul.pt 1365-2664.2011.01976.x Ó 2011 The Authors. Journal of Applied Ecology Ó 2011 British Ecological Society averaged detectability for phytophagous species was influenced by the number of surveys and season, whereas the number of surveys and sampling methods [ground-or canopy-level mist nets, harp traps and acoustic sampling (AS)] most strongly affected estimates of detectability for animalivorous bats. Species-specific detectability averaged 0AE4 and was highly heterogeneous across 232 species, with estimates ranging from 0AE03 to 0AE84. Species-level detectability was influenced by a range of external factors such as location, season, or sampling method, suggesting that raw species counts may sometimes be strongly biased. 4. Synthesis and applications. Due to generally high species-specific detection probabilities, Neotropical aerial insectivorous bats proved to be well suited for monitoring using AS. However, for species with low detectability, such as most gleaning animalivores or nectarivores, count data obtained in bat monitoring surveys must be corrected for detection bias. Our results indicate that species-averaged detection probabilities will rarely approach 1 unless many surveys are conducted. Consequently, long-term bat monitoring programmes need to adopt an estimation scheme that corrects for variation in detectability when comparing species richness over time and when making regional comparisons. Similar corrections will be needed for other species-rich tropical taxa. Journal of AppliedEcology 2011, 48, 777-787 doi: 10.1111/j.
Summary1. Frugivory among bats (Chiroptera) has evolved independently in the New and Old World tropics: within the families Phyllostomidae and Pteropodidae, respectively. Bats from both families rely primarily on olfaction for the location of fruits. However, the influence of bats on the evolution of fruit scent is almost completely unknown. 2. Using the genus Ficus as a model, the aims of this study were to explore the chemical composition of fruit scent in relation to two contrasting seed dispersal syndromes in Panama and Malaysia and to assess the influence of fruit scent on the foraging behaviour of neo-and palaeotropical fruit-eating bats (Artibeus jamaicensis and Cynopterus brachyotis, respectively). Two hypotheses were tested: (i) variation in fruit scent, between bat-and bird-dispersed figs, is independent of phylogeny and (ii) Old and New World fruit bats, which have evolved independently in each hemisphere, share the same olfactory preferences with respect to fruit scent. 3. The fruit scents of bat-and bird-dispersed fig species were sampled in the field, using dynamic headspace adsorption techniques. New and Old World fruit bats were then captured and tested on natural fig fruit scents from both hemispheres. 4. Chemical analyses, using gas chromatography (GC) and GC/mass spectrometry (MS), revealed a broad overlap in scent compounds between bat-dispersed fig species from both hemispheres. Their fruit scents were dominated by monoterpenes, which contrary to phylogenetic predictions, were completely absent from bird-dispersed species from both regions. 5. The fruit scents of bat-dispersed figs were highly attractive to neotropical bats (A. jamaicensis) in behavioural experiments, whereas those of bird-dispersed figs were completely rejected. Neotropical bats (A. jamaicensis) exhibited a significant preference for fig fruit scents dominated by monoterpenes, independent of the geographical origin of the scent. Palaeotropical bats (C. brachyotis), by contrast, rejected monoterpene-rich fruit scents from the Neotropics. 6. In a cluster analysis (which included additional, published data from the literature), the fruit scents of bat-dispersed figs were clumped by subgenus, with the exception of palaeotropical figs of the subgenus Sycomorus. C. brachyotis, from Malaysia, was the only fruit bat species that significantly preferred the fruit scents of Sycomorus figs that contained no monoterpenes.
We investigated the fruit odors of two bat-dispersed fig species in the Paleotropics, in relation to the foraging behavior of fruit bats, to test the following hypotheses: 1) fruit odor plays a critical role for detection and selection of ripe figs by fruit bats; 2) bat-dispersed fig species are characterized by the same, or similar, chemical compounds; and 3) total scent production, in bat-dispersed figs, increases when fruits ripen. We performed bioassays to test the effect of both natural and synthetic fig fruit odors on the foraging behavior of the short-nosed fruit bat (Cynopterus brachyotis)-an important disperser of figs within the study area. Fruit bats responded to both visual and chemical (olfactory) cues when foraging for figs. However, the strongest foraging reaction that resulted in a landing or feeding attempt was almost exclusively associated with the presence of a ripe fruit odor-either in combination with visual cues or when presented alone. Fruit bats also used fruit odors to distinguish between ripe and unripe fruits. By using gas chromatography (GC) and GC/mass spectrometry (MS), a total of 16 main compounds were identified in the ripe fruit odor of Ficus hispida and 13 in the ripe fruit odor of Ficus scortechinii-including alcohols, ketones, esters, and two terpenes. Additional compounds were also recorded in F. hispida, but not identified-four of which also occurred in F. scortechinii. Total scent production increased in both species when fruits ripened. Both natural and synthetic fruit odors resulted in feeding attempts by bats, with no feeding attempts elicited by unscented controls. Reaction rates to natural fruit odors were higher than those to synthetic blends.
The aims of this study were to (1) characterize the food resources exploited by fruit bats (Pteropodidae) within an old‐growth Malaysian dipterocarp forest, (2) test the viability of the seeds they disperse, and (3) provide an estimate of the proportion of trees that are to some degree dependent upon bats for seed dispersal and/or pollination. Fruit species exploited by bats could be distinguished from those eaten by birds largely on the basis of color (as perceived by human beings). Bat‐dispersed fruits were typically inconspicuous shades of green–yellow or dull red–brown, whereas fruits eaten by birds were generally bright orange to red. Dietary overlap between bats and nonflying mammals was relatively high. In contrast to primates and squirrels, which were major seed predators for several of the plant species under investigation, fruit bats had no negative impact on seed viability. A botanical survey in 1 ha of old‐growth forest revealed that 13.7 percent of trees (≫15 cm girth at breast height) were at least partially dependent upon fruit bats for pollination and/or seed dispersal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.