Summary
1.Over the past centuries, European streams have been heavily influenced by humans through pollution and regulation. As a result, the quality and diversity of freshwater riparian habitats have declined strongly, and the diversity of riparian flora and fauna has decreased. Recent restoration measures have resulted in stream habitat improvements, but biodiversity improvements have failed to follow in fragmented streams. It has been suggested that dispersal limitation could play an important role in the lack of biodiversity improvement in restored streams, but to date, there is no conclusive evidence for this assumption. 2. In this study, we investigated whether colonization of restored streams by plants and macroinvertebrates is limited by dispersal. We hypothesized that colonization success increases with increasing availability of (nearby) source populations and with increasing ability of species to disperse over long distances. We related species composition in seven restored stream sections to species' abundances in the surroundings and to species' dispersal abilities. 3. For both plants and macroinvertebrates, colonization success is strongly related to the abundance of species in the local and regional species pools. 4. For plants, dispersal strategy has an additional influence on colonization success: short-lived plants with high production of small, well-dispersed seeds colonized best within the 3-to 5-year period after restoration. 5. The existence of dispersal strategy constraints could not be confirmed in macroinvertebrates, possibly because these are limited by a lack of connectivity on larger spatial scales. On the landscape scale, beneficial effects of increased plant diversity might further improve habitat suitability for macroinvertebrates. 6. Synthesis and applications. Dispersal appears to be a limiting factor for successful (re)colonization of restored streams in fragmented landscapes. In plants, this is attributed to limitations in seed dispersal abilities and likely to a lack of nearby source populations as well. In macroinvertebrates, lack of nearby source populations may also be a limiting factor. Hence, we suggest restoring landscape connectivity at larger spatial scales and optimizing the availability of near-natural 'source' areas in the vicinity of restoration projects, at least for plants, to improve the success of biodiversity restoration in fragmented habitats.
Submerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is challenging, given the important role of macrophytes in stabilizing the clear water state. In this study, the integrated ecosystem model PCLake is used to explore the consequences of mowing, in terms of reducing nuisance and ecosystem stability, for a wide range of external nutrient loadings, mowing intensities and timings. Elodea is used as a model species. Additionally, we use PCLake to estimate how much phosphorus is removed with the harvested biomass, and evaluate the long-term effect of harvesting. Our model indicates that mowing can temporarily reduce nuisance caused by submerged plants in the first weeks after cutting, particularly when external nutrient loading is fairly low. The risk of instigating a regime shift can be tempered by mowing halfway the growing season when the resilience of the system is highest, as our model showed. Up to half of the phosphorus entering the system can potentially be removed along with the harvested biomass. As a result, prolonged mowing can prevent an oligo—to mesotrophic lake from becoming eutrophic to a certain extent, as our model shows that the critical nutrient loading, where the lake shifts to the turbid phytoplankton-dominated state, can be slightly increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.