A configuration selection method for CI calculations is discussed and applied in which the energy lowering produced in a secular equation by the addition of a given test species to a series of dominant configurations is used as an ordering parameter. Configurations with energy lowerings below a given energy cut-off value are not included in the final secular equations but instead a method of estimating the combined effect of the neglected species on the corresponding non-selected CI results is developed. The influence of the choice of main configurations used in the selection process is given close examination as well as the importance of the MO basis employed in the treatment as a whole; in the latter case a non-iterative procedure for obtaining approximate natural orbitals for such calculations is suggested. The resulting configuration selection procedure is equally applicable to all types of electronic states in any nuclear geometry and the results of the associated CI calculations are seen to be essentially equivalent to a complete treatment in which all single-and double-excitation species with respect to a series of dominant configurations in a given state are included.
The multireference spin-orbit (SO) configuration interaction (CI) method in its Lambda-S contracted SO-CI version is employed to calculate two-dimensional potential energy surfaces for the ground and low-lying excited states of CH3I relevant to the photodissociation process in its A absorption band. The computed equilibrium geometry for the X A1 ground state, as well as vibrational frequencies for the nu2 umbrella and nu3 symmetric stretch modes, are found to be in good agreement with available experimental data. The 3Q0+ state converging to the excited I(2P1/2o) limit is found to possess a shallow minimum of 850 cm(-1) strongly shifted to larger internuclear distances (RC-I approximately 6.5a0) relative to the ground state. This makes a commonly employed single-exponent approximation for analysis of the CH3I fragmentation dynamics unsuitable. The 4E(3A1) state dissociating to the same atomic limit is calculated to lie too high in the Franck-Condon region to have any significant impact on the A-band absorption. The computed vertical excitation energies for the 3Q1, 3Q0+, and 1Q states indicate that the A-band spectrum must lie approximately between 33,000 and 44,300 cm(-1), i.e., between 225 and 300 nm. This result is in very good agreement with the experimental findings. The lowest Rydberg states are computed to lie at >or=49,000 cm(-1) and correspond to the ...a(1)2n3a1(6sI) leading configuration. They are responsible for the vacuum ultraviolet absorption lines found experimentally beyond the A-band spectrum at 201.1 nm (49,722 cm(-1)) and higher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.