Accurate clinical course descriptions (phenotypes) of multiple sclerosis (MS) are important for communication, prognostication, design and recruitment of clinical trials, and treatment decision-making. Standardized descriptions published in 1996 based on a survey of international MS experts provided purely clinical phenotypes based on data and consensus at that time, but imaging and biological correlates were lacking. Increased understanding of MS and its pathology, coupled with general concern that the original descriptors may not adequately reflect more recently identified clinical aspects of the disease, prompted a re-examination of MS disease phenotypes by the International Advisory Committee on Clinical Trials of MS. While imaging and biological markers that might provide objective criteria for separating clinical phenotypes are lacking, we propose refined descriptors that include consideration of disease activity (based on clinical relapse rate and imaging findings) and disease progression. Strategies for future research to better define phenotypes are also outlined.
A single course of rituximab reduced inflammatory brain lesions and clinical relapses for 48 weeks. This trial was not designed to assess long-term safety or to detect uncommon adverse events. The data provide evidence of B-cell involvement in the pathophysiology of relapsing-remitting multiple sclerosis. (ClinicalTrials.gov number, NCT00097188 [ClinicalTrials.gov].).
In patients with relapsing-remitting multiple sclerosis, BG-12 (at both doses) and glatiramer acetate significantly reduced relapse rates and improved neuroradiologic outcomes relative to placebo. (Funded by Biogen Idec; CONFIRM ClinicalTrials.gov number, NCT00451451.).
Objective: Degeneration of chronically demyelinated axons is a major cause of irreversible neurological disability in multiple sclerosis (MS) patients. Development of neuroprotective therapies will require elucidation of the molecular mechanisms by which neurons and axons degenerate. Methods: We report ultrastructural changes that support Ca2؉-mediated destruction of chronically demyelinated axons in MS patients. We compared expression levels of 33,000 characterized genes in postmortem motor cortex from six control and six MS brains matched for age, sex, and postmortem interval. As reduced energy production is a major contributor to Ca2؉-mediated axonal degeneration, we focused on changes in oxidative phosphorylation and inhibitory neurotransmission. Results: Compared with controls, 488 transcripts were decreased and 67 were increased (p < 0.05, 1.5-fold) in the MS cortex. Twenty-six nuclear-encoded mitochondrial genes and the functional activities of mitochondrial respiratory chain complexes I and III were decreased in the MS motor cortex. Reduced mitochondrial gene expression was specific for neurons. In addition, pre-synaptic and postsynaptic components of GABAergic neurotransmission and the density of inhibitory interneuron processes also were decreased in the MS cortex. Interpretation: Our data supports a mechanism whereby reduced ATP production in demyelinated segments of upper motor neuron axons impacts ion homeostasis, induces Ca2؉-mediated axonal degeneration, and contributes to progressive neurological disability in MS patients. Neurol 2006;59:478 -489 Rapid communication between neurons requires energy and the insulation of axons by discontinuous segments of myelin. Voltage-gated Na ϩ channels produce nerve impulses and are concentrated at the nodes of Ranvier, 1 the short unmyelinated axon segment between individual myelin internodes. The nerve impulse rapidly jumps from node to node by a process called saltatory conduction. Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS) that destroys myelin, oligodendrocytes, axons, and neurons. Ann2 Pathologically, demyelination predominates during early stages of MS. Neurological disability associated with demyelinating lesions is initially reversible because of a variety of adaptive changes in the MS brain. As part of these changes, Na ϩ channels are distributed diffusely along the surface of demyelinated axons, 3 resulting in slow but effective nerve communication. This also increases the energy demands of neuronal communication and renders the demyelinated axon more susceptible to hypoxic/ischemic damage (for review, see Stys 4 ). After an initial stage (commonly 10 -15 years) of relapses and remissions (RRMS), most MS patients enter a course of irreversible and continuous neurological decline, termed secondary progressive multiple sclerosis (SPMS).2 During SPMS, new inflammatory brain lesions substantially decrease with age, 5 but neurological decline continues due in part to degeneration of chronically...
We evaluated the safety, tolerability, pharmacodynamics, and activity of B-cell depletion with rituximab in patients with relapsing-remitting multiple sclerosis, receiving two courses of rituximab 6 months apart, and followed for a total of 72 weeks. No serious adverse events were noted; events were limited to mild-to-moderate infusion-associated events, which tended to decrease with subsequent infusions. Infections were also mild or moderate, and none led to withdrawal. Fewer new gadolinium-enhancing or T2 lesions were seen starting from week 4 and through week 72. An apparent reduction in relapses was also observed over the 72 weeks compared with the year before therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.