The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth’s ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels.
Phytochromes are a collection of bilin-containing photoreceptors that regulate a diverse array of processes in microorganisms and plants through photoconversion between two stable states, a red light-absorbing Pr form, and a far red light-absorbing Pfr form. Recently, a novel set of phytochrome-like chromoproteins was discovered in cyanobacteria, designated here as cyanochromes, that instead photoconvert between stable blue and green light-absorbing forms Pb and Pg, respectively. Here, we show that the distinctive absorption properties of cyanochromes are facilitated through the binding of phycocyanobilin via two stable cysteine-based thioether linkages within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. Absorption, resonance Raman and infrared spectroscopy, and molecular modeling of the Te-PixJ GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA) domain assembled with phycocyanobilin are consistent with attachments to the C3 1 carbon of the ethylidene side chain and the C4 or C5 carbons in the A-B methine bridge to generate a double thioether-linked phycoviolobilin-type chromophore. These spectroscopic methods combined with NMR data show that the bilin is fully protonated in the Pb and Pg states and that numerous conformation changes occur during Pb 3 Pg photoconversion. Also identified were a number of photochromically inactive mutants with strong yellow or red fluorescence that may be useful for fluorescence-based cell biological assays. Phylogenetic analyses detected cyanochromes capable of different signaling outputs in a wide range of cyanobacterial species. One unusual case is the Synechocystis cyanochrome Etr1 that also binds ethylene, suggesting that it works as a hybrid receptor to simultaneously integrate light and hormone signals. Phytochromes (Phys)3 comprise a large and diverse superfamily of photoreceptors that regulate a wide range of physiological responses in plants, fungi, bacteria, and cyanobacteria (1-3). They are unique among photoreceptors by being able to photoconvert between two stable states, a red light-absorbing Pr form that is typically the dark-adapted and biologically inactive conformer and a far-red light-absorbing Pfr form that requires light for its production and is typically the biologically active conformer. By interconverting between Pr and Pfr, Phys act as light-regulated switches in controlling processes ranging from phototaxis and pigmentation in bacteria to seed germination, photomorphogenesis, and flowering time in higher plants.Light absorption by Phys is directed by a bilin (or linear tetrapyrrole) chromophore produced by the oxidative cleavage of heme. Although bacterial and fungal Phys use the immediate cleavage product biliverdin (BV), cyanobacterial and higher plant Phys use phycocyanobilin (PCB) and phytochromobilin, respectively, produced by enzymatic reduction of BV (1, 2). The bilin is then covalently bound autocatalytically to the photosensory unit of the apoprotein, which typically contains a sequence of Per/Arndt/Sim (PAS), cGMP phosphodiesterase/aden...
Phytochromes (phys) encompass a diverse collection of biliproteins that enable cellular light perception by photoconverting between a red-light-absorbing ground state (Pr) and a far-red light-absorbing active state (Pfr). Based on the central role of plant phys in controlling numerous agriculturally important processes, their rational redesign offers great promise toward accelerating crop improvement. Employing as templates the available three-dimensional models of the photosensory module within bacterial phys, we report here our initial attempt to apply structure-guided mutagenesis to phy engineering using Arabidopsis (Arabidopsis thaliana) phyB, the dominant isoform in light-grown plants, as the example. A collection of phyB mutants was generated affecting the bilin-binding pocket that altered photochemistry, thermal stability, and/or nuclear localization patterns, some of which also impacted phenotypic outputs. Of particular interest are the Y361F substitution, which created Arabidopsis plants with greatly enhanced light sensitivity, mutants variably altered in Pfr-to-Pr thermal reversion and nuclear aggregation, and the D307A substitution, which failed to photoconvert from Pr to Pfr and display light-induced nuclear aggregation but retained some biological activity and accelerated turnover in red light. Taken together, this collection provides variants potentially useful to agriculture as well as new tools to better understand the molecular mechanisms underpinning phy signaling.
The switch from skotomorphogenesis to photomorphogenesis is a key developmental transition in the life of seed plants. While much of the underpinning proteome remodeling is driven by light-induced changes in gene expression, the proteolytic removal of specific proteins by the ubiquitin-26S proteasome system is also likely paramount. Through mass spectrometric analysis of ubiquitylated proteins affinity-purified from etiolated Arabidopsis seedlings before and after red-light irradiation, we identified a number of influential proteins whose ubiquitylation status is modified during this switch. We observed a substantial enrichment for proteins involved in auxin, abscisic acid, ethylene, and brassinosteroid signaling, peroxisome function, disease resistance, protein phosphorylation and light perception, including the phytochrome (Phy) A and phototropin photoreceptors. Soon after red-light treatment, PhyA becomes the dominant ubiquitylated species, with ubiquitin attachment sites mapped to six lysines. A PhyA mutant protected from ubiquitin addition at these sites is substantially more stable in planta upon photoconversion to Pfr and is hyperactive in driving photomorphogenesis. However, light still stimulates ubiquitylation and degradation of this mutant, implying that other attachment sites and/or proteolytic pathways exist. Collectively, we expand the catalog of ubiquitylation targets in Arabidopsis and show that this post-translational modification is central to the rewiring of plants for photoautotrophic growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.