U(-Th)-Pb geochronology, geothermobarometric estimates and macro-and micro-structural analysis, quantify the pressure-temperature-time-deformation (P-T-t-D) history of Everest Series schist and calcsilicate preserved in the highest structural levels of the Everest region. Pristine staurolite schist from the Everest Series contains garnet with prograde compositional zoning and yields a P-T estimate of 649 ± 21°C, 6.2 ± 0.7 kbar. Other samples of the Everest Series contain garnet with prograde zoning and staurolite with cordierite overgrowths that yield a P-T estimate of 607 ± 25°C, 2.9 ± 0.6 kbar. The Lhotse detachment (LD) marks the base of the Everest Series. Structurally beneath the LD, within the Greater Himalayan Sequence (GHS), garnet zoning is homogenized, contains resorption rinds and yields peak temperature estimates of 650 ± 50°C. P-T estimates record a decrease in pressure from 6 to 3 kbar and equivalent temperatures from structurally higher positions in the overlying Everest Series, through the LD and into GHS. This transition is interpreted to result from the juxtaposition of the Everest Series in the hangingwall with the GHS footwall rocks during southward extrusion and decompression along the LD system. An age constraint for movement on the LD is provided by the crystallization age of the Nuptse granite (23.6 ± 0.7 Ma), a body that was emplaced syn-to post-solidstate fabric development. Microstructural evidence suggests that deformation in the LD progressed from a distributed ductile shear zone into the structurally higher Qomolangma detachment during the final stages of exhumation. When combined with existing geochronological, thermobarometric and structural data from the GHS and Main Central thrust zone, these results form the basis for a more complete model for the P-T-t-D evolution of rocks exposed in the Mount Everest region.
In the Caledonides of northwest Scotland, two independent geothermometers (Fe-Mg exchange and quartz c-axis fabric opening angle) are used to characterize the thermal structure of the lower part of the Scandian (435-420 Ma) orogenic wedge within the Moine, Ben Hope and Naver-Sgurr Beag thrust sheets. Traced from west (foreland) to east (hinterland), Fe-Mg exchange thermometry yields peak or near-peak temperatures ranging from 484 AE 50°C to 524 AE 50°C in the immediate hangingwall of the Moine thrust to 601 AE 50°C in the immediate hangingwall of the Ben Hope thrust, to 630 AE 50°C in the Naver thrust sheet. Preserved metamorphic facies and textural relationships are consistent with thermometric estimates. Deformation temperatures calculated from quartz c-axis fabric opening angles across two similar orogen-perpendicular transects also yield systematic increases (Glen Golly -Ben Klibreck, 520-630°C; Ullapool-Contin, 465-632°C) traced towards the Naver and Sgurr Beag thrusts. In addition, deformation temperatures show a pronounced increase along the leading edge of the Moine thrust sheet moving south towards the Assynt window, which is interpreted to reflect deeper exhumation of the thrust plane above the Assynt footwall imbricate stack. Because temperatures calculated from metamorphic assemblages are within error of the quartz fabricderived deformation temperatures that are of demonstrably Scandian age, the metamorphic sequence between the Moine and Naver-Sgurr Beag thrusts is interpreted to have developed during the Scandian orogeny. Integration of our results with previous 2D thermal-mechanical studies allows development of new conceptual thermal-kinematic models of Scandian orogenesis that may be broadly applicable to other collisional systems. Furthermore, it highlights the critical nature of coupling between orogen kinematic and thermal evolution.
The two major Early to Middle Palaeozoic tectonic/metamorphic events in the northern Appalachians were the Taconian (Middle to Late Ordovician) in central to western areas and the Acadian (Late Silurian to early Middle Devonian) in eastern to west-central areas. This paper presents a model for the Acadian orogenic event which separates the Acadian metamorphic realm into eastern and western belts based on distinctively different styles. We propose that the Acadian metamorphism in the east was the delayed consequence of Taconian back-arc lithospheric modification. East of the Taconian island arc, thick accumulations of Late Ordovician and Silurian sediments, coupled with plutons rising along a magmatic arc, produced crustal thermal conditions appropriate for anomalously high-T, low-P metamorphism accompanied by major crustal anatexis. In this zone, upward melt migration was coupled with subsequent E-W crustal shortening (possibly due to outboard collision with the Avalon terrane) to produce mechanical conditions that favoured formation of fold and thrust nappes and resultant tectonic thickening to the west (and probably to the east as well).The basis for the distinction between the Eastern and Western Acadian events lies in the contrasting styles of metamorphism accompanying each. Evidence for contrasting metamorphic styles consists of (1) estimated metamorphic field gradients (MFGs) based on thermobarometric studies, and (2) petrological evidence for contrasting P-T trajectories. West of the Acadian metamorphic front, the Taconian zone has an MFG in which peak temperatures of 400-600" C were reached at pressures of about 4-6 kbar, with both P and T increasing to the east. Near its western edge, the Western Acadian metamorphic overprint has a similar MFG to the Taconian, and is mainly discriminated by 4"Ar/"Ar dating and microtextural evidence. East of this narrow zone, the Western Acadian overprint is characterized by progressively higher temperatures (600-725" C) and pressures (6.5-10 kbar, or more) to the east, yielding an overall MFG that lies along, or slightly above, the kyanite-sillimanite boundary on a P-T diagram. There is little or no plutonism accompanying Western Acadian metamorphism.In contrast, thermobarometry in the Eastern Acadian, east of the Bronson Hill Belt, yields high-T, intermediate-P conditions for the highest grade rocks known in New England: T = 650-750" C, P = 4.5-6.5 kbar for granulite facies assemblages which apparently formed along an 'anticlockwise' P-T path. The Bronson Hill Belt lies geographically between the Eastern and Western Acadian zones and shows transitional petrological behaviour: anomalously high temperatures at intermediate pressures, but a 'clockwise' path with decompression cooling.Radiometric dating indicates peak Taconian conditions may have been achieved as early as 475 Ma in the Taconian hinterland and as late as 445Ma in the Taconian foreland (including the Taconic allochthons). Eastern Acadian magmatism may have started as early as 425 Ma, and most nappe-stage def...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.