Species of RNA that bind with high affinity and specificity to the bronchodilator theophylline were identified by selection from an oligonucleotide library. One RNA molecule binds to theophylline with a dissociation constant Kd of 0.1 microM. This binding affinity is 10,000-fold greater than the RNA molecule's affinity for caffeine, which differs from theophylline only by a methyl group at nitrogen atom N-7. Analysis by nuclear magnetic resonance indicates that this RNA molecule undergoes a significant change in its conformation or dynamics upon theophylline binding. Binding studies of compounds chemically related to theophylline have revealed structural features required for the observed binding specificity. These results demonstrate the ability of RNA molecules to exhibit an extremely high degree of ligand recognition and discrimination.
We have identified a group of DNA molecules that bind to platelet-derived growth factor (PDGF)-AB with subnanomolar affinity from a randomized DNA library using in vitro selection. Individual ligands cloned from the affinity-enriched pool bind to PDGF-AB and PDGF-BB with comparably high affinity (Kd approximately 10(-10) M) and to PDGF-AA with lower affinity (> 10(-8) M), indicating specific recognition of the PDGF B-chain in the context of the hetero- or homodimer. The consensus secondary structure motif for most of the high-affinity ligands is a three-way helix junction with a three-nucleotide loop at the branch point. Photo-cross-linking experiments with 5-iodo-2'-deoxyuridine-substituted ligands establish a point contact between a thymidine nucleotide in the helix junction loop region and phenylalanine 84 of the PDGF-B chain. Representative minimal DNA ligands inhibit the binding of 125I-PDGF-BB but not of 125I-PDGF-AA to PDGF alpha- or beta-receptors expressed in porcine aortic endothelial (PAE) cells in a concentration-dependent manner with half-maximal effects of approximately 1 nM. The same ligands also exhibit a similar inhibitory effect on PDGF-BB-dependent [3H]thymidine incorporation in PAE cells expressing the PDGF beta-receptors. These DNA ligands represent a novel class of specific and potent antagonists of PDGF-BB and, by inference, PDGF-AB.
To visualize the interplay of RNA structural interactions in a ligand binding site, we have determined the solution structure of a high affinity RNA-theophylline complex using NMR spectroscopy. The structure provides insight into the ability of this in vitro selected RNA to discriminate theophylline from the structurally similar molecule caffeine. Numerous RNA structural motifs combine to form a well-ordered binding pocket where an intricate network of hydrogen bonds and stacking interactions lock the theophylline into the complex. Two internal loops interact to form the binding site which consists of a sandwich of three base triples. The complex also contains novel base-zipper and 1-3-2 stacking motifs, in addition to an adenosine platform and a reversed sugar. An important feature of the RNA is that many of the conserved core residues participate in multiple overlapping tertiary interactions. This complex illustrates how interlocking structural motifs can be assembled into a highly specific ligand-binding site that possesses high levels of affinity and molecular discrimination.
Clinical and field-portable diagnostic devices require the detection of atto-to zeptomoles of biological molecules rapidly, easily and at low cost, with stringent requirements in terms of robustness and reliability. Though a number of creative approaches to this difficult problem have been reported 1-9 , numerous unmet needs remain in the marketplace, particularly in resource-poor settings [10][11][12] . Using rational materials design, we investigated harnessing the amplification inherent in a radical chain polymerization reaction to detect molecular recognition. Polymerization-based amplification is shown to yield a macroscopically observable polymer, easily visible to the unaided eye, as a result of as few as ~1,000 recognition events (10 zeptomoles). Design and synthesis of a dual-functional macromolecule that is capable both of selective recognition and of initiating a polymerization reaction was central to obtaining high sensitivity and eliminating the need for any detection equipment. Herein, we detail the design criteria that were used and compare our findings with those obtained using enzymatic amplification. Most excitingly, this new approach is general in that it is readily adaptable to facile detection at very low levels of specific biological interactions of any kind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.