An experimental test for measuring the friction between Ti-6Al-4V sheet material and S310 stainless steel tool material at 900 o C is presented. The test is intended for application to Ti-6Al-4V superplastic forming for the manufacture of aeroengine components. The work is motivated by the need for accurate, representative data for process modelling, where accurate simulation is critical to formed component dimensions. The results show a time dependency of friction. The effects of boron nitride density, applied normal load and die surface roughness are investigated.All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans Tech Publications Ltd, www.scientific.net. (Scite.
SUMMARYIn high-speed low-load mechanisms, the principal loads are the inertial forces caused by the high accelerations and velocities. Hence, mechanical design should consider lightweight structures to minimize such loads. In this paper, a topological optimization method is presented on the basis of the equivalent static loads method. Finite element (FE) models of the mechanism in different positions are constructed, and the equivalent loads are obtained using flexible multibody dynamics simulation. Kinetic DOFs are used to simulate the motion joints, and a quasi-static analysis is performed to obtain the structural responses. The element sensitivity is calculated according to the static-load-equivalent equilibrium, in such a way that the influence on the inertial force is considered. A dimensionless component sensitivity factor (strain energy caused by unit load divided by kinetic energy from unit velocity) is used, which quantifies the significance of each element. Finally, the topological optimization approach is presented on the basis of the evolutionary structural optimization method, where the objective is to find the maximum ratio of strain energy to kinetic energy. In order to show the efficiency of the presented method, we presented two numerical cases. The results of these analyses show that the presented method is more efficient and can be easily implemented in commercial FE analysis software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.