Dichlorodiphenyldichlorethane (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) (DDT) is an organochlorine insecticide that was widely used from the late 1940s to the 1970s in fruit orchards in the Okanagan valley, British Columbia, Canada, and in the process, contaminated American robin (Turdus migratorius) food chains with the parent compound and metabolite dichlorodiphenyldichloroethylene (1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene) (p,p′-DDE). In the present study, we examined the biological fate of these DDT-related (DDT-r) compounds at the same sites/region 26 years after a previous study by: (1) collecting soil, earthworms, and American robin eggs from apple, cherry, and pear orchards; (2) characterizing the diet and trophic positions of our biota using stable isotope analyses of δ 13 C and δ 15 N; and (3) estimating fugacity, biota-soil-accumulation factors (BSAFs), and biomagnification factors (BMFs). Mean p,p′-DDE concentrations (soil: 16.1 µg/g organic carbon-lipid equivalent; earthworms: 96.5 µg/g lipid equivalent; eggs: 568 µg/g lipid equivalent) revealed that contamination is present at elevated levels similar to the 1990s and our average soil DDE:DDT ratio of 1.42 confirmed that DDT is slowly degrading. American robins appeared to feed at similar trophic levels, but on different earthworms as indicated by egg stable isotope values (mean δ 15 N = 8.51‰ ± 0.25; δ 13 C = −26.32‰ ± 0.12). Lumbricidae and Aporrectodea worms shared a roughly similar δ 15 N value; however, Lumbricus terrestris showed a markedly enriched δ 13 C isotope, suggesting differences in organic matter consumption and physiological bioavailability. Biota-soil-accumulation factors and BMFs ranged over several orders of magnitude and were generally >1 and our fugacity analyses suggested that p,p′-DDE is still thermodynamically biomagnifying in American robin food chains. Our results demonstrate that DDT-r in fruit orchards remains bioavailable to free-living terrestrial passerines and may pose a potential toxicological risk.
Whether perfluoroalkyl sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs) are responding to legislative restrictions and showing decreasing trends in top marine predators that range across the eastern North Pacific Ocean is unclear. Here, we examined longer-term temporal trends (1973−2019) of 4 PFSAs and 13 PFCAs, as well stable isotopes of δ 13 C and δ 15 N, in the eggs of 4 seabird species sampled along a nearshore-offshore gradient; double-crested cormorants (Nannopterum auritum), pelagic cormorants (Urile pelagicus), rhinoceros auklets (Cerorhinca monocerata), and Leach's storm-petrels (Hydrobates leucorhous) from the Pacific coast of British Columbia, Canada. PFOS was the most abundant PFSA (79−94%) detected in all eggs regardless of colony and year, with the highest concentrations, on average, measured in auklet eggs (mean = 58 ng g −1 , range = 11−286 ng g −1 ww). Perfluoroundecanoic acid (PFUdA) and perfluorotridecanoic acid (PFTriDA) were the dominant long-chain PFCAs (≥30% combined). The majority of PFSAs (including PFOS) are statistically declining (p < 0.001) in the eggs of all 4 species with PFOS half-lives ranging from 2.6 to 7.8 years. Concentrations of long-chain PFCAs exhibited a trajectory comprised of linear increases and second-order declines, suggesting that the rate of uptake of PFCAs is slowing or leveling off. These trends are consistent with the voluntarily ceased production of PFSAs by 3M circa 2000−2003 and are among the first from the northeast Pacific to indicate a positive response to several regulations and restrictions on PFCAs from facility emissions and product content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.