Dichlorodiphenyldichlorethane (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) (DDT) is an organochlorine insecticide that was widely used from the late 1940s to the 1970s in fruit orchards in the Okanagan valley, British Columbia, Canada, and in the process, contaminated American robin (Turdus migratorius) food chains with the parent compound and metabolite dichlorodiphenyldichloroethylene (1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene) (p,p′-DDE). In the present study, we examined the biological fate of these DDT-related (DDT-r) compounds at the same sites/region 26 years after a previous study by: (1) collecting soil, earthworms, and American robin eggs from apple, cherry, and pear orchards; (2) characterizing the diet and trophic positions of our biota using stable isotope analyses of δ 13 C and δ 15 N; and (3) estimating fugacity, biota-soil-accumulation factors (BSAFs), and biomagnification factors (BMFs). Mean p,p′-DDE concentrations (soil: 16.1 µg/g organic carbon-lipid equivalent; earthworms: 96.5 µg/g lipid equivalent; eggs: 568 µg/g lipid equivalent) revealed that contamination is present at elevated levels similar to the 1990s and our average soil DDE:DDT ratio of 1.42 confirmed that DDT is slowly degrading. American robins appeared to feed at similar trophic levels, but on different earthworms as indicated by egg stable isotope values (mean δ 15 N = 8.51‰ ± 0.25; δ 13 C = −26.32‰ ± 0.12). Lumbricidae and Aporrectodea worms shared a roughly similar δ 15 N value; however, Lumbricus terrestris showed a markedly enriched δ 13 C isotope, suggesting differences in organic matter consumption and physiological bioavailability. Biota-soil-accumulation factors and BMFs ranged over several orders of magnitude and were generally >1 and our fugacity analyses suggested that p,p′-DDE is still thermodynamically biomagnifying in American robin food chains. Our results demonstrate that DDT-r in fruit orchards remains bioavailable to free-living terrestrial passerines and may pose a potential toxicological risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.