Recently, chemoselective methods for the hydrogenation of fluorinated, silylated, and borylated arenes have been developed providing direct access to previously unattainable, valuable products. Herein, a comprehensive study on the employed rhodium-cyclic (alkyl)(amino)carbene (CAAC) catalyst precursor is disclosed. Mechanistic experiments, kinetic studies, and surface-spectroscopic methods revealed supported rhodium(0) nanoparticles (NP) as the active catalytic species. Further studies suggest that CAAC-derived modifiers play a key role in determining the chemoselectivity of the hydrogenation of fluorinated arenes, thus offering an avenue for further tuning of the catalytic properties.
As many conjugated polymer-based organic photovoltaic (OPV) materials provide substantial solar power conversion efficiencies (as high as 13%), it is important to develop a deeper understanding of how the primary repeat unit structures impact device performance. In this work, we have varied the group 14 atom (C, Si, Ge) at the center of a bithiophene fused ring to elucidate the impact of a minimal repeat unit structure change on the optical, transport, and morphological properties, which ultimately control device performance. Careful polymerization and polymer purification produced three "one-atom change" donor−acceptor conjugated alternating copolymers with similar molecular weights and dispersities. DFT calculation, absorption spectroscopy, and high-temperature solution 1 H nuclear magnetic resonance (NMR) results indicate that poly(dithienosilole-alt-thienopyrrolodione), P(DTS-TPD), and poly-(dithienogermole-alt-thienopyrrolodione), P(DTG-TPD) exhibit different rotational conformations when compared to poly(cyclopentadithiophene-alt-thienopyrrolodione), P(DTC-TPD). Solid-state 1 H MAS NMR experiments reveal that the greater probability of the anticonformation in P(DTS-TPD) and P(DTG-TPD) prevail in the solid phase. The conformational variation seen in solution and solid-state NMR in turn affects the polymer stacking and intermolecular interaction. Twodimension 1 H-1 H DQ-SQ NMR correlation spectra shows aromatic−aromatic correlations for P(DTS-TPD) and P(DTG-TPD), which on the other hand is absent for P(DTC-TPD). In a thin-film interchain packing study using grazing incidence wide-angle X-ray scattering (GIWAXS), we observe the π-face of the conjugated backbones of P(DTC-TPD) aligned edge-on to the substrate, whereas in contrast the π-faces of P(DTS-TPD) and P(DTG-TPD) align parallel to the surface. These differences in polymer conformations and backbone orientations lead to variations in the OPV performance of blends with the fullerene PC 71 BM, with the device containing P(DTC-TPD):PCBM having a lower fill factor and a lower power conversion efficiency. Ultrafast transient absorption spectroscopy shows the P(DTC-TPD):PCBM blend to have a more pronounced triplet formation from bimolecular recombination of initially separated charges. With a combination of sub-bandgap external quantum efficiency measurements and DFT calculations, we present evidence that the greater charge recombination loss is the result of a lower lying triplet energy level for P(DTC-TPD), leading to a higher rate of recombination and lower OPV device performance. Importantly, this study ties ultimate photovoltaic performance to morphological features in the active films that are induced from the processing solution and are a result of minimal one-atom differences in polymer repeat unit structure.
Triplet dioxygen was reduced by TEMPO or trityl radicals in the presence of two molar equivalents of the strong B(p-C F X) (X: F or H) boron Lewis acids under mild conditions to give the bis(borane)superoxide systems 2. The sensitive radical anion species were isolated and characterized by methods including X-ray crystal structure analysis and EPR spectroscopy.
Thymomas and thymic carcinomas (TC) are malignant thymic epithelial tumors (TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and may offer new therapeutic options. Metabolic profiles of snap-frozen thymomas (WHO types A, AB, B1, B2, B3, n = 12) and TCs (n = 3) were determined by high resolution magic angle spinning 1H nuclear magnetic resonance (HRMAS 1H-NMR) spectroscopy. Metabolite-based prediction of active KEGG metabolic pathways was achieved with MetPA. In relation to metabolite-based metabolic pathways, gene expression signatures of TETs (n = 115) were investigated in the public “The Cancer Genome Atlas” (TCGA) dataset using gene set enrichment analysis. Overall, thirty-seven metabolites were quantified in TETs, including acetylcholine that was not previously detected in other non-endocrine cancers. Metabolite-based cluster analysis distinguished clinically indolent (A, AB, B1) and aggressive TETs (B2, B3, TCs). Using MetPA, six KEGG metabolic pathways were predicted to be activated, including proline/arginine, glycolysis and glutathione pathways. The activated pathways as predicted by metabolite-profiling were generally enriched transcriptionally in the independent TCGA dataset. Shared high lactic acid and glutamine levels, together with associated gene expression signatures suggested a strong “Warburg effect”, glutaminolysis and redox homeostasis as potential vulnerabilities that need validation in a large, independent cohort of aggressive TETs. If confirmed, targeting metabolic pathways may eventually prove as adjunct therapeutic options in TETs, since the metabolic features identified here are known to confer resistance to cisplatin-based chemotherapy, kinase inhibitors and immune checkpoint blockers, i.e., currently used therapies for non-resectable TETs.
The trifunctional P/B/B frustrated Lewis pairs 11a–c featuring bulky aryl groups at phosphorus [Dmesp (a), Tipp (b), Mes* (c)] were synthesized. Compounds 11a,b react with carbon monoxide and form the macrocyclic dimers 17a,b, while the carbonylation reaction of the Mes*P/B/B FLP 11c gives the macrocyclic trimer 18c.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.