The neural crest is an important transient structure that develops during embryogenesis in vertebrates. Neural crest cells are multipotent progenitor cells that migrate and develop into a diverse range of cells and tissues throughout the body. Although neural crest cells originate from the ectoderm, they can differentiate into mesodermal-type or endodermal-type cells and tissues. Some of these tissues include the peripheral, autonomic, and enteric nervous systems; chromaffin cells of the adrenal medulla; smooth muscles of the intracranial blood vessels; melanocytes of the skin; cartilage and bones of the face; and parafollicular cells of the thyroid gland. Neurocristopathies are a group of diseases caused by the abnormal generation, migration, or differentiation of neural crest cells. They often involve multiple organ systems in a single person, are often familial, and can be associated with the development of neoplasms. As understanding of the neural crest has advanced, many seemingly disparate diseases, such Treacher Collins syndrome, 22q11.2 deletion syndrome, Hirschsprung disease, neuroblastoma, neurocutaneous melanocytosis, and neurofibromatosis, have come to be recognized as neurocristopathies. Neurocristopathies can be divided into three main categories: dysgenetic malformations, neoplasms, and combined dysgenetic and neoplastic syndromes. In this article, neural crest development, as well as several associated dysgenetic, neoplastic, and combined neurocristopathies, are reviewed. Neurocristopathies often have clinical manifestations in multiple organ systems, and radiologists are positioned to have significant roles in the initial diagnosis of these disorders, evaluation of subclinical associated lesions, creation of treatment plans, and patient follow-up.