We have postulated that chromosomal replication origin regions in eukaryotes have in common clusters of certain modular sequence elements (Benbow, Zhao, and Larson, BioEssays 14, 661-670, 1992). In this study, computer analyses of DNA sequences from six origin regions showed that each contained one or more potential initiation regions consisting of a putative DUE (DNA unwinding element) aligned with clusters of SAR (scaffold associated region), and ARS (autonomously replicating sequence) consensus sequences, and pyrimidine tracts. The replication origins analyzed were from the following loci: Tetrahymena thermophila macronuclear rDNA gene, Chinese hamster ovary dihydrofolate reductase amplicon, human c-myc proto-oncogene, chicken histone H5 gene, Drosophila melanogaster chorion gene cluster on the third chromosome, and Chinese hamster ovary rhodopsin gene. The locations of putative initiation regions identified by the computer analyses were compared with published data obtained using diverse methods to map initiation sites. For at least four loci, the potential initiation regions identified by sequence analysis aligned with previously mapped initiation events. A consensus DNA sequence, WAWTTDDWWWDHWGWHMAWTT, was found within the potential initiation regions in every case. An additional 35 kb of combined flanking sequences from the six loci were also analyzed, but no additional copies of this consensus sequence were found.
DNA topoisomerase I has been purified to electrophoretic homogeneity from ovaries of the frog Xenopus laevis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most purified fraction revealed a single major band at 110 kDa and less abundant minor bands centered at 62 kDa. Incubation of the most purified fraction with immobilized calf intestinal alkaline phosphatase abolished all DNA topoisomerase enzymatic activity in a time-dependent reaction. Treatment of the dephosphorylated X. laevis DNA topoisomerase I with a X. laevis casein kinase type II activity and ATP restored DNA topoisomerase activity to a level higher than that observed in the most purified fraction. In vitro labeling experiments which employed the most purified DNA topoisomerase I fraction, [gamma-32P]ATP, and the casein kinase type II enzyme showed that both the 110- and 62-kDa bands became phosphorylated in approximately molar proportions. Phosphoamino acid analysis showed that only serine residues became phosphorylated. Phosphorylation was accompanied by an increase in DNA topoisomerase activity in vitro. Dephosphorylation of DNA topoisomerase I appears to block formation of the initial enzyme-substrate complex on the basis of the failure of the dephosphorylated enzyme to nick DNA in the presence of camptothecin. We conclude that X. laevis DNA topoisomerase I is partially phosphorylated as isolated and that this phosphorylation is essential for expression of enzymatic activity in vitro. On the basis of the ability of the casein kinase type II activity to reactivate dephosphorylated DNA topoisomerase I, we speculate that this kinase may contribute to the physiological regulation of DNA topoisomerase I activity.
Chromosomal origins of DNA replication in higher eukaryotes differ significantly from those of E. coli (oriC) and the tumor virus, SV40 (ori sequence). Initiation events appear to occur throughout broad zones rather than at specific origin sequences. Analysis of four chromosomal origin regions reveals that they share common modular sequence elements. These include DNA unwinding elements, pyrimidine tracts that may serve as strong DNA polymerase-primase start sites, scaffold associated regions, transcriptional regulatory sequences, and, possibly, initiator protein binding sites and inherently destabilized regions. Based on the novel organization of chromosomal origin regions, we propose a model for initiation of DNA replication in higher eukaryotes. Unwinding of duplex DNA during initiation may be uncoupled, both temporally and spatially, from DNA synthesis, resulting in transient single-stranded intermediates that function in lieu of conventional replication forks during chromosomal DNA replication. DNA synthesis begins subsequently at multiple sites within the unwound regions rather than at specific origin sequences.
Chromosomal DNA was isolated from rapidly dividing cells of Xenopus laevis embryos at blastulation, at gastrulation, and at the beginning of hatching. Few, if any, replication forks were seen by electron microscopy in DNA isolated at any stage of embryogenesis. Instead, unbranched DNA, which appeared to be single-stranded, was abundant at all stages. The percentage of chromosomal DNA that was single-stranded was quantitated by electron microscopy and by monitoring the release of acid-soluble radioactivity during digestion of labeled chromosomal DNA with nucleases specific for single-stranded DNA. The amount of single-stranded DNA was inversely correlated with the length of S phase during embryogenesis. We postulate that chromosomal DNA replication in X. Ievis embryos takes place by a mechanism in which strand separation is uncoupled from DNA synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.