To determine how low intensity pulsed ultrasound alters gene expression in rat bone marrow stromal cells and to see if combining this stimulation with BMP-2, cells were pre-cultured for eight days in the presence of 50 &ml ascorbic acid and then exposed to either low intensity US or 100ng/ml BMP-2 or both combined, beginning on the first, third fifth or seventh day of culture so that cells were exposed to the stimuli for one, three, five or seven days. Real time PCR was used to determine the effect of these treatments on gene expression of several genes associated with osteogenesis. The expression of some of the genes (Cbfa-lIRunx2, IGFreceptor, Alk-3, alkaline phosphatase, osteopontin, TGF-PI, BMP-7) was increased compared to untreated controls. Combination of US and BMP-2 treatment did not lead to synergy of the two stimuli. Cbfa-1 stimulation occurred more quickly with US than with BMP-2.Increases in gene expression were greatest after 3 days exposure to US, with similar results for BMP-2 treatment implying that there may be a time dependence for the stimulus of osteogenic gene expression in stromal cells.
The purposes of the present study were to determine if recombinant human transforming growth factor-beta-2 (rhTGF-beta2) enhances bone ingrowth into porous-coated implants and bone regeneration in gaps between the implant and surrounding host bone. The implants were placed bilaterally for four weeks in the proximal humeri of skeletally mature, adult male dogs in the presence of a 3-mm gap. In three treatment groups of animals, the test implant was treated with hydroxyapatite/tricalcium phosphate (HA/TCP) and rhTGF-beta2 in buffer at a dose per implant of 1.2 microg (n = 6), 12 microg (n = 7), or 120 microg (n = 7) and placed in the left humerus. In these same animals, an internal control implant treated only with HA/TCP and buffer was placed in the right humerus. In a non-TGF-beta treated external control group of animals (n = 7), one implant was treated with HA/TCP while the contralateral implant was not treated with the ceramic. In vitro analyses showed that approximately 15%, of the applied dose was released within 120 h with most of the release occurring in the first 24 h. The TGF-beta treated implants had significantly more bone ingrowth than the controls with the greatest effect in the 12 microg/implant group (a 2.2-fold increase over the paired internal control (P = 0.004) and a 4-fold increase over the external control (P < 0.001)). The TGF-beta treated implants had significantly more bone formation in the gap than the controls with the greatest effect in the 12 and 120 microg groups (1.8-fold increases over the paired internal controls (P = 0.003 and P = 0.012, respectively) and 2.8-fold increases over the external controls (P < 0.001 and P = 0.001, respectively)). Compared to the external controls, the internal control implants tended to have more bone ingrowth (1.9-fold increase, P = 0.066) and had significantly more bone formation in the gap (1.7-fold increase. P = 0.008). Thus, application of rhTGF-beta2 to a porous-coated implant-stimulated local bone ingrowth and gap healing in a weakly dose-dependent manner and stimulated bone regeneration in the 3-mm gap surrounding the contralateral control implant, a site remote from the local treatment with the growth factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.