Islet cell autoantigen 69-kDa (ICA69), protein product of the human ICA1 gene, is one target of the immune processes defining the pathogenesis of Type 1 diabetes. We have characterized the genomic structure and functional promoters within the 5-regulatory region of ICA1. 5-RNA ligase-mediated rapid amplification of cDNA ends evaluation of ICA1 transcripts expressed in human islets, testis, heart, and cultured neuroblastoma cells reveals that three 5-untranslated region exons are variably expressed from the ICA1 gene in a tissue-specific manner. Surrounding the transcription initiation sites are motifs characteristic of non-TATA, non-CAAT, GC-rich promoters, including consensus Sp1/GC boxes, an initiator element, cAMP-responsive element-binding protein (CREB) sites, and clusters of other putative transcription factor sites within a genomic CpG island. Luciferase reporter constructs demonstrate that the first two ICA1 exon promoters reciprocally stimulate luciferase expression within islet-(RIN 1046-38 cells) and brain-derived (NMB7) cells in culture; the exon A promoter exhibits greater activity in islet cells, whereas the exon B promoter more efficiently activates transcription in neuronal cells. Mutation of a CREB site within the ICA1 exon B promoter significantly enhances transcriptional activity in both cell lines. Our basic understanding of expression from the functional core promoter elements of ICA1 is an important advance that will not only add to our knowledge of the ICA69 autoantigen but will also facilitate a rational approach to discover the function of ICA69 and to identify relevant ICA1 promoter polymorphisms and their potential associations with disease.
These observations have important implications for experiments involving genetic manipulation of the alpha1,3GT gene in transgenic animals in terms of promoter utilization, and particularly in genetically engineering cells for the animal cloning technology by nuclear transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.