Acromegaly can be detected by computer software using photographs of the face. Classification accuracy by software is higher than by medical experts or general internists, particularly in patients with mild features of acromegaly. This is a promising tool to help detecting acromegaly.
In this preliminary analysis we found a good classification accuracy of Cushing's syndrome by face classification software. Testing accuracy is comparable to that of currently employed screening tests.
Objective Cushing’s syndrome is a rare disease characterized by clinical features that show morphological similarity with the metabolic syndrome. Distinguishing these diseases in clinical practice is challenging. We have previously shown that computer vision technology can be a potentially useful diagnostic tool in Cushing’s syndrome. In this follow-up study, we addressed the described problem by increasing the sample size and including controls matched by body mass index.
Methods We enrolled 82 patients (22 male, 60 female) and 98 control subjects (32 male, 66 female) matched by age, gender and body-mass-index. The control group consisted of patients with initially suspected, but biochemically excluded Cushing’s syndrome. Standardized frontal and profile facial digital photographs were acquired. The images were analyzed using specialized computer vision and classification software. A grid of nodes was semi-automatically placed on disease-relevant facial structures for analysis of texture and geometry. Classification accuracy was calculated using a leave-one-out cross-validation procedure with a maximum likelihood classifier.
Results The overall correct classification rates were 10/22 (45.5%) for male patients and 26/32 (81.3%) for male controls, and 34/60 (56.7%) for female patients and 43/66 (65.2%) for female controls. In subgroup analyses, correct classification rates were higher for iatrogenic than for endogenous Cushing’s syndrome.
Conclusion Regarding the advanced problem of detecting Cushing’s syndrome within a study sample matched by body mass index, we found moderate classification accuracy by facial image analysis. Classification accuracy is most likely higher in a larger sample with healthy control subjects. Further studies might pursue a more advanced analysis and classification algorithm.
BackgroundLittle is known about outpatient health services use following critical illness and intensive care. We examined the association of intensive care with outpatient consultations and quality of life in a population-based sample.MethodsCross-sectional analysis of data from 6,686 participants of the Study of Health in Pomerania (SHIP), which consists of two independent population-based cohorts. Statistical modeling was done using Poisson regression, negative binomial and generalized linear models for consultations, and a fractional response model for quality of life (EQ-5D-3L index value), with results expressed as prevalence ratios (PR) or percent change (PC). Entropy balancing was used to adjust for observed confounding.ResultsICU treatment in the previous year was reported by 139 of 6,686 (2,1%) participants, and was associated with a higher probability (PR 1.05 [CI:1.03;1.07]), number (PC +58.0% [CI:22.8;103.2]) and costs (PC +64.1% [CI:32.0;103.9]) of annual outpatient consultations, as well as with a higher number of medications (PC +37.8% [CI:17.7;61.5]). Participants with ICU treatment were more likely to visit a specialist (PR 1.13 [CI:1.09; 1.16]), specifically internal medicine (PR 1.67 [CI:1.45;1.92]), surgery (PR 2.42 [CI:1.92;3.05]), psychiatry (PR 2.25 [CI:1.30;3.90]), and orthopedics (PR 1.54 [CI:1.11;2.14]). There was no significant effect regarding general practitioner consultations. ICU treatment was also associated with lower health-related quality of life (EQ-5D index value: PC -13.7% [CI:-27.0;-0.3]). Furthermore, quality of life was inversely associated with outpatient consultations in the previous month, more so for participants with ICU treatment.ConclusionsOur findings suggest that ICU treatment is associated with an increased utilization of outpatient specialist services, higher medication intake, and impaired quality of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.