The COPII coat assembles on endoplasmic reticulum membranes to coordinate the collection of secretory cargo with the formation of transport vesicles. During COPII assembly, Sar1 deforms the membrane and recruits the Sec23-Sec24 complex (Sec23/24), which is the primary cargo-binding adaptor for the system, and Sec13-Sec31 (Sec13/31), which provides a structural outer layer for vesicle formation. Here we show that Sec13 depletion results in concomitant loss of Sec31 and juxtanuclear clustering of pre-budding complexes containing Sec23/24 and cargo. Electron microscopy reveals the presence of curved coated profiles on distended endoplasmic reticulum, indicating that Sec13/31 is not required for the generation or maintenance of the curvature. Surprisingly, export of tsO45-G-YFP, a marker of secretory cargo, is unaffected by Sec13/31 depletion; by contrast, secretion of collagen from primary fibroblasts is strongly inhibited. Suppression of Sec13 expression in zebrafish causes defects in proteoglycan deposition and skeletal abnormalities that are grossly similar to the craniofacial abnormalities of crusher mutant zebrafish and patients with cranio-lenticulo-sutural dysplasia. We conclude that efficient coupling of the inner (Sec23/24) and outer (Sec13/31) layers of the COPII coat is required to drive the export of collagen from the endoplasmic reticulum, and that highly efficient COPII assembly is essential for normal craniofacial development during embryogenesis.
The inverse source problem for monochromatic sources Re[p(r, w)e-iwt] to the scalar-wave equation is investigated. It is shown that a unique solution to the inverse source problem can be obtained by imposing the constraint that the solution minimize the source energy E = Sd 3 r p (r, W) 2. For certain recording geometries the time derivative of the real image produced by a point-reference hologram is shown to be directly proportional to the time-reversed minimum energy source Re[p*ME(r, w)e-ilt] in the short-wavelength limit.
Angiosperm stigmas have long been known to exhibit high levels of peroxidase activity when they are mature and most receptive to pollen but the biological function of stigma peroxidases is not known. A novel stigma-specific class III peroxidase gene, SSP (stigma-specific peroxidase) expressed exclusively in the stigmas of Senecio squalidus L. (Asteraceae) has recently been identified. Expression of SSP is confined to the specialized secretory cells (papillae) that compose the stigma epidermis. The literature on stigma peroxidases and hypotheses on their function(s) is reviewed here before further characterization of SSP and an attempt to determine its function are described. It is shown that SSP is localized to cytoplasmic regions of stigmatic papillae and also to the surface of these cells, possibly as a component of the pellicle, a thin layer of condensed protein typical of "dry" stigmas. Enzyme assays on recombinant SSP showed it to be a peroxidase with a preference for diphenolic substrates (ABTS and TMB) and a pH optimum of approximately 4.5. In such assays the peroxidase activity of SSP was low when compared with horseradish peroxidase. To explore the function of SSP and other stigmatic peroxidases, levels of reactive oxygen species (ROS) in stigmas of S. squalidus were investigated. Relatively large amounts of ROS, principally H(2)O(2), were detected in S. squalidus stigmas where most ROS/H(2)O(2) was localized to the stigmatic papillae, the location of SSP. These observations are discussed in the context of possible functions for SSP, other peroxidases, and ROS in the stigmas of angiosperms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.