Phosphorus (P) is a central element to life on Earth. Living organisms are dependent on a persistent supply of P as it is crucially involved in most major metabolic processes, e.g. in energy transfer as adenosine triphosphate (ATP). Likewise, plants rely on P to secure energy production in photosynthesis (Smil 2000, Ruttenberg 2009). Therefore, the fundamental significance of P in agriculture and food production is beyond question.In nature, we can identify several P pools (Smil 2000, Ruttenberg 2009). The largest P reservoir in the lithosphere occurs in marine and freshwater sediments (about 800-4000 × 10 6 Mt P). The entire phytomass (terrestrial and marine; about 570-625 Mt P) amounts to over 90% of P stored in the totality of all living organisms. Gaseous compounds of P are not stable; therefore, only an insignificant amount (0.028 Mt P) exists in the atmosphere as dust and sea spray picked up by wind erosion. The flows of P between these reservoirs are slow (one cycle may take more than 1 million years), which is caused by the low solubility of phosphate in water and the lack of an airborne reservoir.In soils, P derives mainly from weathering of the primary mineral apatite (Schlesinger 1997). The average total P in soils ranges from 200 mg/kg (in older/highly weathered soils) to 800 mg/kg (in younger/less developed soils) (Cross and ABSTRACTPhosphorus (P) fertilization is commonly based on soil testing, for which a variety of different soil P extraction methods are in use. The aim of this study was to compare 14 soil P extraction methods in terms of their extraction yield and their relation to soil properties. Fifty contrasting agricultural topsoils were sampled from Austria and Germany. The soils were extracted with the following methods/extractants: H 2 O, CaCl 2 , LiCl, Olsen, Bray and Kurtz II (Bray II), Mehlich 3, calcium-acetate-lactate (CAL), iron oxide impregnated filter papers (Fe-oxide P i ), cation and anion exchange membranes (CAEM), acid ammonium oxalate, citrate-bicarbonate-dithionite, HCl, organic P and total P. The extracted P varied over three orders of magnitude and increased in the order H 2 O < CaCl 2 < LiCl < Fe-oxide P i < Olsen < CAL < CAEM < Mehlich 3 < Bray II < dithionite < organic P < HCl < oxalate < total P. This sequence is in accordance with previous studies and reflects different extraction mechanisms and P pools. The different extraction methods were generally well correlated, especially when P extraction was achieved by a similar mechanism. The soil properties most influential on P extractability were pH, carbonate content, texture as well as iron oxide content and crystallinity. Our results show that the different extraction methods extract distinct pools of soil P with strongly varying extractability, and that the extractability of a given pool may be influenced by different soil properties to different extents. If and how these relationships translate to plant P uptake requires further examination.
Abstract. Despite advances regarding the microbial and organic-molecular impact on nucleation, the formation of dolomite in sedimentary environments is still incompletely understood. Since 1960, apparent dolomite formation has been reported from mud sediments of the shallow, oligohaline and alkaline Lake Neusiedl, Austria. To trace potential dolomite formation or diagenetic alteration processes in its deposits, lake water samples and sediment cores were analyzed with respect to sediment composition, hydrochemistry and bacterial community composition. Sediments comprise 20 cm of homogenous mud with 60 wt % carbonate, which overlies dark-laminated consolidated mud containing 50 wt % carbonate and plant debris. Hydrochemical measurements reveal a shift from oxic lake water with pH 9.0 to anoxic sediment pore water with pH 7.5. A decrease in SO42- with a concomitant increase in ΣH2S and NH4+ from 0 to 15 cm core depth indicates anaerobic heterotrophic decomposition, including sulfate reduction. The bacterial community composition reflects the zonation indicated by the pore water chemistry, with a distinct increase in fermentative taxa below 15 cm core depth. The water column is highly supersaturated with respect to (disordered) dolomite and calcite, whereas saturation indices of both minerals rapidly approach zero in the sediment. Notably, the relative proportions of different authigenic carbonate phases and their stoichiometric compositions remain constant with increasing core depth. Hence, evidence for Ca–Mg carbonate formation or ripening to dolomite is lacking within the sediment of Lake Neusiedl. As a consequence, precipitation of high-magnesium calcite (HMC) and protodolomite does not occur in association with anoxic sediment and sulfate-reducing conditions. Instead, analytical data for Lake Neusiedl suggest that authigenic HMC and protodolomite precipitate from the supersaturated, well-mixed aerobic water column. This observation supports an alternative concept to dolomite formation in anoxic sediments, comprising Ca–Mg carbonate precipitation in the water column under aerobic and alkaline conditions.
A b s t r a c t. Agricultural intensification, especially enhanced mechanisation of soil management, can lead to the deterioration of soil structure and to compaction. A possible amelioration strategy is the application of (structural) lime. In this study, we tested the effect of two different liming materials, ie limestone (CaCO 3 ) and quicklime (CaO), on soil aggregate stability in a 3-month greenhouse pot experiment with three agricultural soils. The liming materials were applied in the form of pulverised additives at a rate of 2 000 kg ha -1 . Our results show a significant and instantaneous increase of stable aggregates after quicklime application whereas no effects were observed for limestone. Quicklime application seems to improve aggregate stability more efficiently in soils with high clay content and cation exchange capacity. In conclusion, quicklime application may be a feasible strategy for rapid improvement of aggregate stability of fine textured agricultural soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.