Extinctions of 3 genera, 27 species, and 13 subspecies of fishes from North America are documented during the past 100 years. Extinctions are recorded from all areas except northern Canada and Alaska. Regions suffering the greatest loss are the Great Lakes, Great Basin, Rio Grande, Valley of Mexico, and Parras Valley in Mexico. More than one factor contributed to the decline and extinction of 82% of the fishes. Physical habitat alteration was the most frequently cited causal factor (73%). Detrimental effects of introduced species also were cited in 68% of the extinctions. Chemical habitat alteration (including pollution) and hybridization each were cited in 38% of the extinctions, and overharvesting adversely affected 15% of the fishes. This unfortunate and unprecedented rate of loss of the fishery resource is expected to increase as more of the native fauna of North America becomes endangered or threatened.
Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural-computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activitydependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury.spinal cord injury | spike timing-dependent plasticity | recurrent neural-computer interface | rehabilitation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.