Non-muscle myosin II (NM II) is an actin-binding protein that has actin cross-linking and contractile properties and is regulated by the phosphorylation of its light and heavy chains. The three mammalian NM II isoforms have both overlapping and unique properties. Owing to its position downstream of convergent signalling pathways, NM II is central in the control of cell adhesion, cell migration and tissue architecture. Recent insight into the role of NM II in these processes has been gained from loss-of-function and mutant approaches, methods that quantitatively measure actin and adhesion dynamics and the discovery of NM II mutations that cause monogenic diseases.
Non-muscle myosin II has diverse functions in cell contractility, cytokinesis and locomotion, but the specific contributions of its different isoforms have yet to be clarified. Here, we report that ablation of the myosin IIA isoform results in pronounced defects in cellular contractility, focal adhesions, actin stress fibre organization and tail retraction. Nevertheless, myosin IIA-deficient cells display substantially increased cell migration and exaggerated membrane ruffling, which was dependent on the small G-protein Rac1, its activator Tiam1 and the microtubule moter kinesin Eg5. Myosin IIA deficiency stabilized microtubules, shifting the balance between actomyosin and microtubules with increased microtubules in active membrane ruffles. When microtubule polymerization was suppressed, myosin IIB could partially compensate for the absence of the IIA isoform in cellular contractility, but not in cell migration. We conclude that myosin IIA negatively regulates cell migration and suggest that it maintains a balance between the actomyosin and microtubule systems by regulating microtubule dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.