BACKGROUND Androgen-deprivation therapy (ADT) has been the backbone of treatment for metastatic prostate cancer since the 1940s. We assessed whether concomitant treatment with ADT plus docetaxel would result in longer overall survival than that with ADT alone. METHODS We assigned men with metastatic, hormone-sensitive prostate cancer to receive either ADT plus docetaxel (at a dose of 75 mg per square meter of body-surface area every 3 weeks for six cycles) or ADT alone. The primary objective was to test the hypothesis that the median overall survival would be 33.3% longer among patients receiving docetaxel added to ADT early during therapy than among patients receiving ADT alone. RESULTS A total of 790 patients (median age, 63 years) underwent randomization. After a median follow-up of 28.9 months, the median overall survival was 13.6 months longer with ADT plus docetaxel (combination therapy) than with ADT alone (57.6 months vs. 44.0 months; hazard ratio for death in the combination group, 0.61; 95% confidence interval [CI], 0.47 to 0.80; P<0.001). The median time to biochemical, symptomatic, or radiographic progression was 20.2 months in the combination group, as compared with 11.7 months in the ADT-alone group (hazard ratio, 0.61; 95% CI, 0.51 to 0.72; P<0.001). The rate of a prostate-specific antigen level of less than 0.2 ng per milliliter at 12 months was 27.7% in the combination group versus 16.8% in the ADT-alone group (P<0.001). In the combination group, the rate of grade 3 or 4 febrile neutropenia was 6.2%, the rate of grade 3 or 4 infection with neutropenia was 2.3%, and the rate of grade 3 sensory neuropathy and of grade 3 motor neuropathy was 0.5%. CONCLUSIONS Six cycles of docetaxel at the beginning of ADT for metastatic prostate cancer resulted in significantly longer overall survival than that with ADT alone. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT00309985.)
SUMMARY Allelic loss of the essential autophagy gene beclin1 occurs in human cancers and renders mice tumor-prone suggesting that autophagy is a tumor-suppression mechanism. While tumor cells utilize autophagy to survive metabolic stress, autophagy also mitigates the resulting cellular damage that may limit tumorigenesis. In response to stress, autophagy-defective tumor cells preferentially accumulate p62/SQSTM1 (p62), endoplasmic reticulum (ER) chaperones, damaged mitochondria, reactive oxygen species (ROS), and genome damage. Moreover, suppressing ROS or p62 accumulation prevented damage resulting from autophagy defects indicating that failure to regulate p62 caused oxidative stress. Importantly, sustained p62 expression resulting from autophagy defects was sufficient to alter NF-κB regulation and gene expression and to promote tumorigenesis. Thus defective autophagy is a mechanism for p62 upregulation commonly observed in human tumors that contributes directly to tumorigenesis likely by perturbing the signal transduction adaptor function of p62 controlling pathways critical for oncogenesis.
Autophagy is a catabolic pathway used by cells to support metabolism in response to starvation and to clear damaged proteins and organelles in response to stress. We report here that expression of a H-ras V12 or K-ras V12 oncogene up-regulates basal autophagy, which is required for tumor cell survival in starvation and in tumorigenesis.In Ras-expressing cells, defective autophagosome formation or cargo delivery causes accumulation of abnormal mitochondria and reduced oxygen consumption. Autophagy defects also lead to tricarboxylic acid (TCA) cycle metabolite and energy depletion in starvation. As mitochondria sustain viability of Ras-expressing cells in starvation, autophagy is required to maintain the pool of functional mitochondria necessary to support growth of Ras-driven tumors. Human cancer cell lines bearing activating mutations in Ras commonly have high levels of basal autophagy, and, in a subset of these, down-regulating the expression of essential autophagy proteins impaired cell growth. As cancers with Ras mutations have a poor prognosis, this ''autophagy addiction'' suggests that targeting autophagy and mitochondrial metabolism are valuable new approaches to treat these aggressive cancers.
Macroautophagy (autophagy) is a lysosomal degradation pathway for the breakdown of intracellular proteins and organelles. Although constitutive autophagy is a homeostatic mechanism for intracellular recycling and metabolic regulation, autophagy is also stress responsive, in which it is important for the removal of damaged proteins and organelles. Autophagy thereby confers stress tolerance, limits damage, and sustains viability under adverse conditions. Autophagy is a tumor-suppression mechanism, yet it enables tumor cell survival in stress. Reconciling how loss of a prosurvival function can promote tumorigenesis, emerging evidence suggests that preservation of cellular fitness by autophagy may be key to tumor suppression. As autophagy is such a fundamental process, establishing how the functional status of autophagy influences tumorigenesis and treatment response is important. This is especially critical as many current cancer therapeutics activate autophagy. Therefore, efforts to understand and modulate the autophagy pathway will provide new approaches to cancer therapy and prevention. (Clin Cancer Res 2009;15(17):5308-16) Autophagy Is a Lysosomal Degradation Pathway for Intracellular DigestionStress stimuli activate cellular pathways for adaptation that are crucial for cells to either tolerate adverse conditions or to trigger cell suicide mechanisms, such as apoptosis to eliminate damaged and potentially dangerous cells (1). Metabolic stress, including starvation, increases the cellular requirement for energy production and damage mitigation, and catabolic cellular self-digestion by autophagy plays a critical role in both instances. Stress activates autophagy, in which double membrane vesicles form and engulf proteins, cytoplasm, protein aggregates, and organelles that are then delivered to lysosomes where they are degraded (2). Autophagy serves to maintain cellular metabolism through recycling of cellular components when the availability of external nutrient sources is limited. Autophagydeficient mice have tissues with low ATP levels and fail to survive the neonatal starvation period, providing a clear example of autophagy-mediated management of energy homeostasis (3). Stress, particularly resulting from oxidative damage due to aging or hypoxic conditions, damages proteins and organelles that require autophagy for elimination. Mice with autophagy defects accumulate cells with polyubiquitinated p62 (sequestosome1)-containing protein aggregates and damaged mitochondria and show elevated oxidative stress and cell death (4-8). Thus, autophagy is important for the degradative turnover of damaged proteins and organelles during stress, the failure of which is toxic to cells and tissues and can be pro-inflammatory. Peptides generated from proteins degraded by autophagy can also be used for antigen presentation to T cells for regulation of immunity and host defense (9). The importance of autophagy as a homeostatic and survival-promoting mechanism is underscored by the association of autophagy defects in t...
Autophagy is an evolutionarily conserved, intracellular self-defense mechanism in which organelles and proteins are sequestered into autophagic vesicles that are subsequently degraded through fusion with lysosomes. Cells, thereby, prevent the toxic accumulation of damaged or unnecessary components, but also recycle these components to sustain metabolic homoeostasis. Heightened autophagy is a mechanism of resistance for cancer cells faced with metabolic and therapeutic stress, revealing opportunities for exploitation as a therapeutic target in cancer. We summarize recent developments in the field of autophagy and cancer and build upon the results presented at the Cancer Therapy Evaluation Program (CTEP) Early Drug Development meeting in March 2010. Herein, we describe our current understanding of the core components of the autophagy machinery and the functional relevance of autophagy within the tumor microenvironment, and we outline how this knowledge has informed preclinical investigations combining the autophagy inhibitor hydroxychloroquine (HCQ) with chemotherapy, targeted therapy, and immunotherapy. Finally, we describe ongoing clinical trials involving HCQ as a first generation autophagy inhibitor, as well as strategies for the development of novel, more potent, and specific inhibitors of autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.