We used a coupled social-ecological model to study the landscape-scale patterns emerging from a mobile population of anglers exploiting a spatially structured walleye (Sander vitreus) fishery. We systematically examined how variations in angler behaviors (i.e., relative importance of walleye catch rate in guiding fishing site choices), harvesting efficiency (as implied by varying degrees of inverse density-dependent catchability of walleye), and angler population size affected the depletion of walleye stocks across 157 lakes located near Thunder Bay (Ontario, Canada). Walleye production biology was calibrated using lake-specific morphometric and edaphic features, and angler fishing site choices were modeled using an empirically grounded multi-attribute utility function. We found support for the hypothesis of sequential collapses of walleye stocks across the landscape in inverse proportionality of travel cost from the urban residence of anglers. This pattern was less pronounced when the regional angler population was low, density-dependent catchability was absent or low, and angler choices of lakes in the landscape were strongly determined by catch rather than non-catch-related attributes. Thus, our study revealed a systematic pattern of high catch importance reducing overfishing potential at low and aggravating overfishing potential at high angler population sizes. The analyses also suggested that density-dependent catchability might have more serious consequences for regional overfishing states than variations in angler behavior. We found little support for the hypotheses of systematic overexploitation of the most productive walleye stocks and homogenized catch-related qualities among lakes sharing similar access costs to anglers. Therefore, one should not expect anglers to systematically exploit the most productive fisheries or to equalize catch rates among lakes through their mobility and other behaviors. This study underscores that understanding landscape overfishing dynamics involves a careful appreciation of angler population size and how it interacts with the attributes that drive angler behaviors and depensatory mechanisms such as inverse density-dependent catchability. Only when all of these ingredients are considered and understood can one derive reasonably predictable patterns of overfishing in the landscape. These patterns range from self-regulating systems with low levels of regional fishing pressure to sequential collapse of walleye fisheries from the origin of angling effort.
We used published information to determine optimum light and temperature conditions for walleye Sander vitreus (formerly Stizostedion vitreum) and then applied this simple niche definition to predict how water clarity, temperature, and bathymetry affect walleye habitat availability. Our model calculated thermal–optical habitat area (TOHA), the benthic area of a lake that supplies optimum light, and temperature conditions for walleye during an annual cycle. When water clarity is very low, little walleye habitat exists. As water clarity increases, TOHA for walleye initially increases and then declines exponentially. Optimum water clarity increases with maximum depth of the lake or, in the case of thermally stratified lakes, with thermocline depth. We tested this model by evaluating its ability to account for differences in the sustained yields of walleye fisheries on Ontario lakes. Our results demonstrate that (1) walleye harvest increases in proportion to TOHA times the square root of total dissolved solids, an index of nutrient level, and (2) optimum water clarity for walleye typically exists when Secchi depth is on the order of 2 m. These findings indicate that the increases in water clarity recently observed in the Great Lakes basin (as a result of phosphorus control and dreissenid mussel invasion) have reduced the supply of thermal–optical walleye habitat and, consequently have probably had negative effects on walleye production.
Clearcut logging around three 30- to 40-ha dimictic northwestern Ontario lakes was associated with increases of 5% or less in midlake wind speed and no measurable changes in spring and fall circulation efficiency or duration of stratification. Water clarity, indexed as the depth at which photosynthetically active radiation was 1% of surface intensity, declined by 25% after 3 years. Late-summer thermoclines were about 1 m shallower in two lakes after logging, but it was not possible to exclude weather as a factor. None of the lakes showed significant declines in lake trout (Salvelinus namaycush) habitat volume. A forested shoreline buffer strip around one of the lakes prevented increases in midlake wind speed but did not prevent declines in water clarity and thermocline depth.
Changes in mature forest cover amount, composition, and configuration can be of significant consequence to wildlife populations. The response of wildlife to forest patterns is of concern to forest managers because it lies at the heart of such competing approaches to forest planning as aggregated vs. dispersed harvest block layouts. In this study, we developed a species assessment framework to evaluate the outcomes of forest management scenarios on biodiversity conservation objectives. Scenarios were assessed in the context of a broad range of forest structures and patterns that would be expected to occur under natural disturbance and succession processes. Spatial habitat models were used to predict the effects of varying degrees of mature forest cover amount, composition, and configuration on habitat occupancy for a set of 13 focal songbird species. We used a spatially explicit harvest scheduling program to model forest management options and simulate future forest conditions resulting from alternative forest management scenarios, and used a process-based fire-simulation model to simulate future forest conditions resulting from natural wildfire disturbance. Spatial pattern signatures were derived for both habitat occupancy and forest conditions, and these were placed in the context of the simulated range of natural variation. Strategic policy analyses were set in the context of current Ontario forest management policies. This included use of sequential time-restricted harvest blocks (created for Woodland caribou (Rangifer tarandus) conservation) and delayed harvest areas (created for American marten (Martes americana atrata) conservation). This approach increased the realism of the analysis, but reduced the generality of interpretations. We found that forest management options that create linear strips of old forest deviate the most from simulated natural patterns, and had the greatest negative effects on habitat occupancy, whereas policy options that specify deferment and timing of harvest for large blocks helped ensure the stable presence of an intact mature forest matrix over time. The management scenario that focused on maintaining compositional targets best supported biodiversity objectives by providing the composition patterns required by the 13 focal species, but this scenario may be improved by adding some broad-scale spatial objectives to better maintain large blocks of interior forest habitat through time.RÉSUMÉ. Les changements dans la configuration, la composition et l'étendue du couvert forestier des forêts matures peuvent avoir des conséquences importantes sur les populations fauniques. La réaction de la faune aux patrons forestiers préoccupe les aménagistes car elle est au coeur d'approches de planification forestière aussi divergentes que l'agglomération et la dispersion des parterres de coupe. Dans cette étude, nous avons développé un cadre d'évaluation des espèces afin de mesurer les effets de différents scénarios d'aménagement forestier sur des objectifs de conservation de la biodiversité. Les ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.