Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
This study details the phylogeographic pattern of the bank vole, Clethrionomys glareolus, a European rodent species strongly associated with forest habitat. We used sequences of 1011 base pairs of the mitochondrial DNA cytochrome b gene from 207 bank voles collected in 62 localities spread throughout its distribution area. Our results reveal the presence of three Mediterranean (Spanish, Italian and Balkan) and three continental (western, eastern and 'Ural') phylogroups. The endemic Mediterranean phylogroups did not contribute to the post-glacial recolonization of much of the Palaearctic range of species. Instead, the major part of this region was apparently recolonized by bank voles that survived in glacial refugia in central Europe. Moreover, our phylogeographic analyses also reveal differentiated populations of bank voles in the Ural mountains and elsewhere, which carry the mitochondrial DNA of another related vole species, the ruddy vole (Clethrionomys rutilus). In conclusion, this study demonstrates a complex phylogeographic history for a forest species in Europe which is sufficiently adaptable that, facing climate change, survives in relict southern and northern habitats. The high level of genetic diversity characterizing vole populations from parts of central Europe also highlights the importance of such regions as a source of intraspecific genetic biodiversity.
1. Glacial refugia were core areas for the survival of temperate species during unfavourable environmental conditions and were the sources of postglacial recolonizations. Unfortunately, the locations of glacial refugia of animals and plants are usually described by models, without reference to facts about real geographical ranges at that time. 2.Careful consideration of the faunal assemblages of archaeological sites from the Younger Palaeolithic, which are precisely dated to the Last Glacial Maximum (LGM), gives indications about the distribution of species during the LGM (23 000-16 000 BP ) and provides evidence for the locations of glacial refugia for mammalian species in Europe. 3. In Europe, 47 LGM sites, dating from 23 000 to 16 000 BP and containing typical temperate mammal species, have been described. The geographical range of these archaeological sites clearly shows a distribution which differs from the hypothesized traditional refuge areas of the temperate fauna. A considerable number of sites situated in the Dordogne in southwestern France and the Carpathian region contain records of red deer Cervus elaphus , roe deer Capreolus capreolus , wild boar Sus scrofa and red fox Vulpes vulpes . 4. The faunal composition of the majority of the evaluated Palaeolithic sites in the southern European peninsulas (with the exception of Greece), as well as France and the Carpathian region, indicates the co-occurrence of these temperate species with cold-adapted faunal elements such as mammoth Mammuthus primigenius and/or reindeer Rangifer tarandus . 5. The survival of species in Central European refugia would have significant consequences for phylogeography and would be revealed by the dominant distribution of haplotypes, originating from this region. A Carpathian refuge could also be the reason for the very early records of small mammals or mustelids from the Late-Glacial or Interstadials before the LGM in regions like southern Germany.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.