The exact role of posterior parietal cortex (PPC) in visually directed reaching is unknown. We propose that, by building an internal representation of instantaneous hand location, PPC computes a dynamic motor error used by motor centers to correct the ongoing trajectory. With unseen right hands, five subjects pointed to visual targets that either remained stationary or moved during saccadic eye movements. Transcranial magnetic stimulation (TMS) was applied over the left PPC during target presentation. Stimulation disrupted path corrections that normally occur in response to target jumps, but had no effect on those directed at stationary targets. Furthermore, left-hand movement corrections were not blocked, ruling out visual or oculomotor effects of stimulation.
SUMMARY OF RECENT ADVANCESThe roles of the basal ganglia (BG) in motor control are much debated. Many influential hypotheses have grown from studies in which output signals of the BG were not blocked, but pathologically-disturbed. A weakness of that approach is that the resulting behavioral impairments reflect degraded function of the BG per se mixed together with secondary dysfunctions of BGrecipient brain areas. To overcome that limitation, several studies have focused on the main skeletomotor output region of the BG, the globus pallidus internus (GPi). Using single-cell recording and inactivation protocols these studies provide consistent support for two hypotheses: the BG modulates movement performance ("vigor") according to motivational factors (i.e., context-specific cost/reward functions) and the BG contributes to motor learning. Results from these studies also add to the problems that confront theories positing that the BG selects movement, inhibits unwanted motor responses, corrects errors online, or stores and produces welllearned motor skills.
These data provide important information concerning target identification for ablative or deep brain stimulation procedures in idiopathic Parkinson's disease and other movement disorders.
Physiologically guided implantation of DBS electrodes in patients with dystonia was technically feasible in the awake state in most patients, and the morbidity rate was low. Spontaneous discharge rates of GPI neurons in dystonia were similar to those of globus pallidus externus neurons, such that the two nuclei must be distinguished by neuronal discharge patterns rather than rates. Active electrode locations associated with robust improvement (> 70% decrease in BFMDRS score) were located near the intercommissural plane, at a mean distance from the pallidocapsular border of 3.6 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.