The scaffold protein TOPBP1Dpb11 has been implicated in homologous recombination DNA repair, but its function and mechanism of action remain unclear. Liu et al. define a conserved role for TOPBP1Dpb11 in recombination control through regulated, opposing interactions with pro- and anti-resection factors.
SIRT5 is a member of the sirtuin family of NAD +-dependent protein lysine deacylases implicated in a variety of physiological processes. SIRT5 removes negatively charged malonyl, succinyl, and glutaryl groups from lysine residues and thereby regulates multiple enzymes involved in cellular metabolism and other biological processes. SIRT5 is overexpressed in human breast cancers and other malignancies, but little is known about the therapeutic potential of SIRT5 inhibition for treating cancer. Here we report that genetic SIRT5 disruption in breast cancer cell lines and mouse models caused increased succinylation of IDH2 and other metabolic enzymes, increased oxidative stress, and impaired transformation and tumorigenesis. We, therefore, developed potent, selective, and cell-permeable small-molecule SIRT5 inhibitors. SIRT5 inhibition suppressed the transformed properties of cultured breast cancer cells and significantly reduced mammary tumor growth in vivo, in both genetically engineered and xenotransplant mouse models. Considering that Sirt5 knockout mice are generally normal, with only mild phenotypes observed, these data establish SIRT5 as a promising target for treating breast cancer. The new SIRT5 inhibitors provide useful probes for future investigations of SIRT5 and an avenue for targeting SIRT5 as a therapeutic strategy.
Skeletal muscle relaxation has been primarily studied by assessing the kinetics of force decay. Little is known about the resultant dynamics of structural changes in myosin heads during relaxation. r The naturally occurring nucleotide 2-deoxy-ATP (dATP) is a myosin activator that enhances cross-bridge binding and kinetics. r X-ray diffraction data indicate that with elevated dATP, myosin heads were extended closer to actin in relaxed muscle and myosin heads return to an ordered, resting state after contraction more quickly. r Molecular dynamics simulations of post-powerstroke myosin suggest that dATP induces structural changes in myosin heads that increase the surface area of the actin-binding regions promoting myosin interaction with actin, which could explain the observed delays in the onset of relaxation. r This study of the dATP-induced changes in myosin may be instructive for determining the structural changes desired for other potential myosin-targeted molecular compounds to treat muscle diseases.
The phosphatidylinositol 3′ kinase (PI3K)‐related kinase ATR is crucial for mammalian meiosis. ATR promotes meiotic progression by coordinating key events in DNA repair, meiotic sex chromosome inactivation (MSCI), and checkpoint-dependent quality control during meiotic prophase I. Despite its central roles in meiosis, the ATR-dependent meiotic signaling network remains largely unknown. Here, we used phosphoproteomics to define ATR signaling events in testes from mice following chemical and genetic ablation of ATR signaling. Quantitative analysis of phosphoproteomes obtained after germ cell-specific genetic ablation of the ATR activating 9-1-1 complex or treatment with ATR inhibitor identified over 14,000 phosphorylation sites from testes samples, of which 401 phosphorylation sites were found to be dependent on both the 9-1-1 complex and ATR. Our analyses identified ATR-dependent phosphorylation events in crucial DNA damage signaling and DNA repair proteins including TOPBP1, SMC3, MDC1, RAD50, and SLX4. Importantly, we identified ATR and RAD1-dependent phosphorylation events in proteins involved in mRNA regulatory processes, including SETX and RANBP3, whose localization to the sex body was lost upon ATR inhibition. In addition to identifying the expected ATR-targeted S/T-Q motif, we identified enrichment of an S/T-P-X-K motif in the set of ATR-dependent events, suggesting that ATR promotes signaling via proline-directed kinase(s) during meiosis. Indeed, we found that ATR signaling is important for the proper localization of CDK2 in spermatocytes. Overall, our analysis establishes a map of ATR signaling in mouse testes and highlights potential meiotic-specific actions of ATR during prophase I progression.
This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.