To obtain the superior strength-ductility-balance of TRIP-grades, a special chemical composition in combination with well adapted processing parameters are a prerequisite. Despite of their excellent formability performance in terms of drawability as characterized by high n-and elongation values, compared to mild steels TRIP-grades are challenging in the press and the body shops. The high strength level in combination with the high work hardening of TRIP-grades result in higher levels of spring back compared to mild steels and higher press forces are required. Furthermore, a higher sensitivity to failure for sharp bending radii and a deterioration of the formability of punched edges is reported for TRIP-grades. While spring back can only be minimized by advanced forming processes supported by new simulation techniques with improved ability to predict spring back, the sensitivity to failure under special forming conditions can be influenced by optimizing microstructural features. Contrary to the forming behaviour, which is influenced significantly by the microstructure, the weldability is mainly governed by the chemical composition and the surface condition of the material. The high carbon content of TRIP-grades compared to mild steels results in a higher hardening potential after welding. Additionally, a fracture behaviour untypical for mild steels after destructive testing of spot welds is sometimes observed for TRIP-grades, which is assessed critically by some OEMs. In this work, after a discussion of the processing conditions, possibilities are demonstrated to improve the forming behaviour by an optimization of the microstructure and the spot weldability by adapting the chemical composition of low-alloyed TRIP grades. First very promising results for TRIP-grades with a minimum tensile strength level of 700 MPa are discussed.
Resistance spot welding (RSW) is a common joining technique in the production of car bodies in white for example, because of its high degree of automation, its short process time, and its reliability. While different steel grades and even dissimilar metals can be joined with this method, the current paper focuses on similar joints of galvanized advanced high strength steel (AHSS), namely dual phase steel with a yield strength of 1200 MPa and high ductility (DP1200HD). This material offers potential for light-weight design. The current work presents a multi-physical finite element (FE) model of the RSW process which gives insights into the local loading and material state, and which forms the basis for future investigations of the local risk of liquid metal assisted cracking and the effect of different process parameters on this risk. The model covers the evolution of the electrical, thermal, mechanical, and metallurgical fields during the complete spot welding process. Phase transformations like base material to austenite and further to steel melt during heating and all relevant transformations while cooling are considered. The model was fully parametrized based on lab scale material testing, accompanying model-based parameter determination, and literature data, and was validated against a large variety of optically inspected burst opened spot welds and micrographs of the welds.
In the automotive industry, corrosion protected galvanized advanced high strength steels with high ductility (AHSS-HD) gain importance due to their good formability and their lightweight potential. Unfortunately, under specific thermomechanical loading conditions such as during resistance spot welding galvanized, AHSS-HD sheets tend to show liquid metal embrittlement (LME). LME is an intergranular decohesion phenomenon leading to a drastic loss of ductility of up to 95%. The occurrence of LME for a given galvanized material mainly depends on thermal and mechanical loading. These influences are investigated for a dual phase steel with an ultimate tensile strength of 1200 MPa, a fracture strain of 14% and high ductility (DP1200HD) by means of systematic isothermal hot tensile testing on a Gleeble® 3800 thermomechanical simulator. Based on the experimental findings, a machine learning procedure using symbolic regression is applied to calibrate an LME damage model that accounts for the governing quantities of temperature, plastic strain and strain rate. The finite element (FE) implementation of the damage model is validated based on the local damage distribution in the hot tensile tested samples and in an exemplary 2-sheet resistance spot weld. The developed LME damage model predicts the local position and the local intensity of liquid metal induced cracking in both cases very well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.