By rational mutagenesis, receptor-specific functional analysis, and visualization of complex formation in solution, we identified individual amino acid side chains involved specifically in the interaction of ciliary neurotrophic factor (CNTF) with CNTFR alpha and not with the beta-components, gp130 and LIFR. In the crystal structure, the side chains of these residues, which are located in helix A, the AB loop, helix B, and helix D, are surface accessible and are clustered in space, thus constituting an epitope for CNTFR alpha. By the same analysis, a partial epitope for gp130 was also identified on the surface of helix A that faces away from the alpha-epitope. Superposition of the CNTF and growth hormone structures showed that the location of these epitopes on CNTF is analogous to the location of the first and second receptor epitopes on the surface of growth hormone. Further comparison with proposed binding sites for alpha- and beta-receptors on interleukin-6 and leukemia inhibitory factor indicated that this epitope topology is conserved among helical cytokines. In each case, epitope I is utilized by the specificity-conferring component, whereas epitopes II and III are used by accessory components. Thus, in addition to a common fold, helical cytokines share a conserved order of receptor epitopes that is function related.
The role of apoptosis in regulating the course of intracellular microbial infection is not well understood. We studied the relationship between apoptotic regulation and bacillus Calmette-Guérin (BCG) treatment in murine peritoneal exudate macrophages (PEM) and the J774 macrophage cell line. In both PEM and J774 cells, mRNA expression of the anti-apoptotic gene, A1, was selectively induced by BCG treatment as compared with other bcl2 family members (bcl-w, bcl-2, bcl-xl, bcl-xs, bax, bak, bad). In PEM, A1 expression was maximal by 8 h postinfection and was abrogated by the proteasomal inhibitor MG-132. The induction was independent of protein synthesis as well as the p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways and did not require live organism. Three genes encoding closely related isoforms of A1 were all expressed; however, the A1-a isoform displayed the greatest fold induction in PEM. BCG-induced A1 expression was associated with protection of host macrophages from NO-mediated apoptosis in both PEM and J774 cells. BCG-mediated protection was abrogated in PEM derived from A1-a−/− mice, indicating a requirement of A1-a for survival of inflammatory macrophages.
The primary ligand-binding protein (CNTFR alpha) of the multicomponent receptor for ciliary neurotrophic factor was produced in Escherichia coli. Using novel applications of size-exclusion chromatography and a protein gel-shift assay, we obtained quantitative separation of correctly refolded protein, as well as analytical monitoring of the refolding process and ligand binding. By these and other methods, we determined a 1:1 stoichiometry for the receptor-ligand complex. To investigate the proposed activity and mechanism of soluble CNTFR alpha as a diffusible factor, we studied the response of TF-1 cells which lack CNTFR alpha to various CNTF ligands and the stimulation of this response by sCNTFR alpha. The results show that sCNTFR alpha combines with CNTF and mediates cell survival with the same relative ligand specificity and relative affinity as the cell-surface form. Thus, soluble receptor can reconstitute on a cell surface active complexes that are analogous to the native complexes. Moreover, both the relative ligand potency in the absence of CNTFR alpha and the kinetics of the response to sCNTFR alpha indicate that the other components of the receptor complex contribute little, but measurably, to the specific potency of CNTF.
The Bcl-2 family of proteins has been characterized by either anti-apoptotic or pro-apoptotic activity. Insight into how Bcl-2 family members function has been gained by determining their intracellular localization. We have generated a monoclonal anti-A1-a antibody and used a COS-7 overexpression system to study the localization of the murine anti-apoptotic Bcl-2 family member, A1-a. A1-a overexpressed in COS-7 cells localized to the nucleus as determined by subcellular fractionation and immunofluorescent microscopy. A1-a in the COS-7 nucleus bound tightly to the nuclear matrix as evidenced by resistance to treatment with DNAse I and RNAse A and sequential extraction with 1.0% Triton X-100, 0.15 M NaCl, 0.25 M HCl, 0.5 M Tris pH 7.4 and 6 M urea. HPLC analysis of A1-a, subsequent to SDS extraction, produced fractions that gave multiple bands when analyzed by Western blot analysis suggesting a propensity to form multimers. COS-7 cells transfected with A1-a were protected from apoptotic induction by staurosporine treatment. Cell Death and Differentiation (2001) 8, 785 ± 793.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.