The release of potent pro-inflammatory mediators is crucial to mounting an efficient host response during infection. However, excessive inflammation may lead to deleterious tissue damage. This is highlighted in severe pneumococcal pneumonia, in which the delicate balance between a robust inflammatory response necessary to kill pneumococci and the loss of organ function determines the outcome of the disease.We assessed the regulation of the potent anti-inflammatory cytokine interleukin (IL)-10 in pneumococcal infection via Western blot, ELISA and chromatin immunoprecipitation analysis.Streptococcus pneumoniae induced IL-10 expression in mouse lungs and human lung epithelial cells. Pneumococcal infection resulted in a strong induction of Krueppel-like factor (KLF)4 expression in vivo and in vitro. The induction of both IL-10 and KLF4 is mediated by a pathway involving bacterial DNA, Toll-like receptor (TLR)9, MyD88 and Src kinase. KLF4 is recruited to the il10 promoter, and small-interfering RNA-mediated knockdown of KLF4 expression blocked IL-10 expression during pneumococcal infection.In conclusion, KLF4 is induced in a bacterial DNA-TLR9-Src-dependent manner and regulates IL-10 expression, linking the detection of bacterial DNA by TLR9 to the control of an inflammatory response.
Current assessment of visual neglect involves paper-and-pencil tests or computer-based tasks. Both have been criticised because of their lack of ecological validity as target stimuli can only be presented in a restricted visual range. This study examined the user-friendliness and diagnostic strength of a new “Circle-Monitor” (CM), which enlarges the range of the peripersonal space, in comparison to a standard paper-and-pencil test (Neglect-Test, NET).MethodsTen stroke patients with neglect and ten age-matched healthy controls were examined by the NET and the CM test comprising of four subtests (Star Cancellation, Line Bisection, Dice Task, and Puzzle Test).ResultsThe acceptance of the CM in elderly controls and neglect patients was high. Participants rated the examination by CM as clear, safe and more enjoyable than NET. Healthy controls performed at ceiling on all subtests, without any systematic differences between the visual fields. Both NET and CM revealed significant differences between controls and patients in Line Bisection, Star Cancellation and visuo-constructive tasks (NET: Figure Copying, CM: Puzzle Test). Discriminant analyses revealed cross-validated assignment of patients and controls to groups was more precise when based on the CM (hit rate 90%) as compared to the NET (hit rate 70%).ConclusionThe CM proved to be a sensitive novel tool to diagnose visual neglect symptoms quickly and accurately with superior diagnostic validity compared to a standard neglect test while being well accepted by patients. Due to its upgradable functions the system may also be a valuable tool not only to test for non-visual neglect symptoms, but also to provide treatment and assess its outcome.
In severe pneumococcal pneumonia, the delicate balance between a robust inflammatory response necessary to kill bacteria and the loss of organ function determines the outcome of disease. In this study, we tested the hypothesis that Krueppel-like factor (KLF) 4 may counter-regulate Streptococcus pneumoniae-related human lung epithelial cell activation using the potent proinflammatory chemokine IL-8 as a model molecule. Pneumococci induced KLF4 expression in human lung, in primary human bronchial epithelial cells, and in the lung epithelial cell line BEAS-2B. Whereas proinflammatory cell activation depends mainly on the classical Toll-like receptor 2-mitogen-activated protein kinase or phosphatidylinositide 3-kinase and NF-κB pathways, the induction of KLF4 occurred independently of these molecules but relied, in general, on tyrosine kinase activation and, in part, on the src kinase family member yamaguchi sarcoma viral oncogene homolog (yes) 1. The up-regulation of KLF4 depended on the activity of the main pneumococcal autolysin LytA. KLF4 overexpression suppressed S. pneumoniae-induced NF-κB and IL-8 reporter gene activation and release, whereas small interfering RNA-mediated silencing of KLF4 or yes1 kinase led to an increase in IL-8 release. The KLF4-dependent down-regulation of NF-κB luciferase activity could be rescued by the overexpression of the histone acetylase p300/cAMP response element-binding protein-associated factor. In conclusion, KLF4 acts as a counter-regulatory transcription factor in pneumococci-related proinflammatory activation of lung epithelial cells, thereby potentially preventing lung hyperinflammation and subsequent organ failure.
The release of potent proinflammatory mediators is not only central for mounting an efficient host response, but also bears the risk for deleterious excessive tissue-damaging inflammation. This is highlighted in severe pneumococcal pneumonia, in which the delicate balance between a robust inflammatory response to kill pneumococci and loss of organ function determines the outcome of disease. In this study, we tested the hypothesis that Krüppel-like factor (KLF)2 counterregulates pneumococci- and pattern recognition receptor-related human lung cell activation. Pneumococci induced KLF2 expression in vitro and in a murine pneumonia model. Activation of TLR2- and nucleotide-binding oligomerization domain protein 2-related signaling induced KLF2 expression in a PI3K-dependent manner. Overexpression of KLF2 downregulated pneumococci-, TLR2-, and nucleotide-binding oligomerization domain protein 2-related NF-κB–dependent gene expression and IL-8 release, whereas small interfering RNA-based silencing of KLF2 provoked an enhanced inflammatory response. KLF2-dependent downregulation of NF-κB activity is partly reversible by overexpression of the histone acetylase p300/CREB-binding protein-associated factor. In conclusion, KLF2 may act as a counterregulatory transcription factor in pneumococci- and pattern recognition receptor-related proinflammatory activation of lung cells, thereby preventing lung hyperinflammation and subsequent organ failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.