We consider optimal Lagrange interpolation with polynomials of degree at most two on the unit interval [−1, 1]. In a largely unknown paper, Schurer (1974, Stud. Sci. Math. Hung. 9, 77-79) has analytically described the infinitely many zero-symmetric and zero-asymmetric extremal node systems −1 ≤ x1 < x2 < x3 ≤ 1 which all lead to the minimal Lebesgue constant 1.25 that had already been determined by Bernstein (1931, Izv. Akad. Nauk SSSR 7, 1025-1050). As Schurer’s proof is not given in full detail, we formally verify it by providing two new and sound proofs of his theorem with the aid of symbolic computation using quantifier elimination. Additionally, we provide an alternative, but equivalent, parameterized description of the extremal node systems for quadratic Lagrange interpolation which seems to be novel. It is our purpose to bring the computer-assisted solution of the first nontrivial case of optimal Lagrange interpolation to wider attention and to stimulate research of the higher-degree cases. This is why our style of writing is expository.
CreaComp is a project at the University of Linz, which aims at producing computer-supported interactive learning units for several mathematical topics at introductory university level. The units are available as Mathematica notebooks. For student experimentation we provide computational, graphical and reasoning tools as well. This paper focuses on the elementary analysis units. The computational and graphical tools of the CreaComp learning environment facilitate the exploration of new mathematical objects and their properties (e.g., boundedness, continuity, limits of real valued functions). Using the provided tools students should be able to collect empirical data systematically and come up with conjectures. A CreaComp component allows the formulation of precise conjectures and the investigatation of their validity. The Theorema system, which has been integrated into the CreaComp learning environment, provides full predicate logic with a user-friendly twodimensional syntax and a couple of automated reasoners that produce proofs in an easy-to-read and natural presentation. We demonstrate the learning situations and the provided tools through several examples.
Many of the recent problems in higher education (less contact seminars, the heterogeneity and the increasing number of our students) call for new instructional methods. At University of Szeged we have developed a mathematical web portal which can offer a solution for such problems among the changing circumstances. This freely available, easy-to-use web-surface supports interactive mathematical problem-solving and student self assessment. Our computer program cooperates with a lot of free software (computer algebra systems, formula parsers, converters, word processors). WebMathematics Interactive has been available for the public since June 2002 on its web page http://wmi.math.u-szeged.hu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.