Dramatic changes occurred within populations of Phytophthora infestans in the United States and Canada from 1994 through 1996. Occurrence of the US-8 genotype, detected rarely during 1992 and 1993, increased rapidly and predominated in most regions during 1994 through 1996. US-7, which infected both potato and tomato and made up almost 50% of the sample during 1993, was detected only rarely among 330 isolates from the United States analyzed during 1994. It was not detected at all in more limited samples from 1996. Thus, ability to infect both potato and tomato apparently did not increase the fitness of this genotype relative to US-8, as predicted previously. US-1, the previously dominant genotype throughout the United States and Canada, made up 8% or less of the samples analyzed during 1994 through 1996. A few additional genotypes were detected, which could indicate the beginnings of sexual reproduction of P. infestans within the United States and Canada. However, clonal reproduction still predominated in all locations sampled; opportunities for sexual reproduction probably were limited, because the A1 and A2 mating types usually were separated geographically. The high sensitivity of the US-1 genotype to the fungicide metalaxyl also could have reduced opportunities for contact between the mating types in fields where this compound was applied. The previous correlation between metalaxyl sensitivity and genotype was confirmed and extended to a new genotype, US-17: all US-1 isolates tested were sensitive; all isolates of the US-7, US-8, and US-17 genotypes tested to date have been resistant. Isolates of P. capsici and P. erythroseptica, two other species often found on tomato and potato, could be easily distinguished from each other and from P. infestans using a simple allozyme assay for the enzyme glucose-6-phosphate isomerase. This technique could be useful for rapid identification of species, in addition to genotype of P. infestans. It generally was not possible to predict which genotypes would be present in a location from 1 year to the next. Long-distance movement of US-8 in seed tubers was documented, and this was probably the primary means for the rapid spread of this genotype from 1993 through 1996.
alpha-Tomatine, synthesized by Lycopersicon and some Solanum species, is toxic to a broad range of fungi, presumably because it binds to 3beta-hydroxy sterols in fungal membranes. Several fungal pathogens of tomato have previously been shown to be tolerant of this glycoalkaloid and to possess enzymes thought to be involved in its detoxification. In the current study, 23 fungal strains were examined for their ability to degrade alpha-tomatine and for their sensitivity to this compound and two breakdown products, beta(2)-tomatine and tomatidine. Both saprophytes and all five non-pathogens of tomato tested were sensitive, while all but two tomato pathogens (Stemphylium solani and Verticillium dahliae) were tolerant of alpha-to-matine (50% effective dose > 300 muM). Except for an isolate of Botrytis cinerea isolated from grape, no degradation products were detected when saprophytes and nonpathogens were grown in the presence of alpha-tomatine. All tomato pathogens except Phytophthora infestans and Pythium aphani-dermatum degraded alpha-tomatine. There was a strong correlation between tolerance to alpha-tomatine, the ability to degrade this compound, and pathogenicity on tomato. However, while beta(2)-tomatine and tomatidine were less toxic to most tomato pathogens, these breakdown products were inhibitory to some of the saprophytes and nonpathogens of tomato, suggesting that tomato pathogens may have multiple tolerance mechanisms to alpha-tomatine.
Phytophthora infestans isolates (n = 26) collected in the Columbia Basin of Oregon and Washington in 1993, which had been characterized previously for mating type, metalaxyl sensitivity, and alleles at the glucose-6-phosphate isomerase locus, were analyzed for nuclear restriction fragment length polymorphism (RFLP) bands detected by probe RG57 and mitochondrial haplotype. Analyses involving the larger set of markers indicated that this group of isolates satisfied expectations of a sexual progeny: they contained much greater genetic diversity than has been reported for most other epidemic populations of P. infestans in the United States and Canada (16 unique multilocus genotypes); both mating types were present in proximity; all possible combinations of alleles occurred at many pairs of polymorphic loci; and two distinct mitochondrial haplotypes were distributed among the isolates. An in vitro laboratory cross involving the putative parents (US-6 and US-7) as parental strains produced progeny with the same general characteristics as the field isolates. Among the field progeny were two genotypes, US-11 and US-16, that had been described previously but from subsequent and largely clonal collections. Isolates obtained from tomatoes (n = 40) and potatoes (n = 7) in 24 counties in California in 1998 were analyzed as described above, and all except one US-8 isolate from potatoes were of the US-11 clonal lineage, consistent with the hypothesis that the US-11 lineage is an especially fit clonal lineage that has survived over time and can dominate pathogen populations over a large area. We conclude that the 1993 Columbia Basin collection represents a sexual progeny that generated the US-11 lineage, and that this lineage is particularly fit when tomatoes are part of the agroecosystem.
A current focus in psychiatric genetics is detection of multiple common risk alleles through very large GWAS analyses. Yet families do exist, albeit rare, that have multiple affected members who are presumed to have a similar inherited cause to their illnesses. We hypothesized that within some of these families there may be rare highly penetrant mutations that segregate with illness. In this exploratory study, the genomes of ninety individuals across nine families were sequenced. Each family included a minimum of three available relatives affected with a psychotic illness and three available unaffected relatives. Twenty-six variants were identified that are private to a family, alter protein sequence, and are transmitted to all affected individuals within the family. In one family, seven siblings with schizophrenia spectrum disorders each carry a novel private missense variant within the SHANK2 gene. This variant lies within the consensus SH3 protein-binding motif by which SHANK2 may interact with post-synaptic glutamate receptors. In another family, four affected siblings and their unaffected mother each carry a novel private missense variant in the SMARCA1 gene on the X chromosome. Both variants represent candidates that may be causal for psychotic disorders when considered in the context of their transmission pattern and known gene and disease biology.
We demonstrate that hGRPs can be consistently obtained, propagated, cryopreserved and characterized using protocols that can be transferred to a good laboratory practice/good manufacturing practice setting for the manufacture of clinical-grade hGRP cellular therapeutics. Functional data demonstrate that cells manufactured under these conditions are able to differentiate into appropriate cellular phenotypes in an animal model of dysmyelination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.