JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Responses to climate change can vary across functional groups and trophic levels, leading to a temporal decoupling of trophic interactions or “phenological mismatches.” Despite a growing number of single‐species studies that identified phenological mismatches as a nearly universal consequence of climate change, we have a limited understanding of the spatial variation in the intensity of this phenomenon and what influences this variation. In this study, we tested for geographic patterns in phenological mismatches between six species of shorebirds and their invertebrate prey at 10 sites spread across ~13° latitude and ~84° longitude in the Arctic over three years. At each site, we quantified the phenological mismatch between shorebirds and their invertebrate prey at (1) an individual‐nest level, as the difference in days between the seasonal peak in food and the peak demand by chicks, and (2) a population level, as the overlapped area under fitted curves for total daily biomass of invertebrates and dates of the peak demand by chicks. We tested whether the intensity of past climatic change observed at each site corresponded with the extent of phenological mismatch and used structural equation modeling to test for causal relationships among (1) environmental factors, including geographic location and current climatic conditions, (2) the timing of invertebrate emergence and the breeding phenology of shorebirds, and (3) the phenological mismatch between the two trophic levels. The extent of phenological mismatch varied more among different sites than among different species within each site. A greater extent of phenological mismatch at both the individual‐nest and population levels coincided with changes in the timing of snowmelt as well as the potential dissociation of long‐term snow phenology from changes in temperature. The timing of snowmelt also affected the shape of the food and demand curves, which determined the extent of phenological mismatch at the population level. Finally, we found larger mismatches at more easterly longitudes, which may be affecting the population dynamics of shorebirds, as two of our study species show regional population declines in only the eastern part of their range. This suggests that phenological mismatches may be resulting in demographic consequences for Arctic‐nesting birds.
The data analysis scheme used in the U.S. Environmental Protection Agency's (EPA's) rapid bioassessment protocols (RBPs) integrates several community, population, and functional parameters (or metrics) into a single assessment of biological condition. A reference data base of macroinvertebrate data obtained from 10 ecoregions in Oregon, Colorado, and Kentucky was used to evaluate the appropriateness and variability of the benthic metrics and the similarities of results among ecoregions. Several statistical procedures, including principal component analysis, correlation coefficient, analysis of variance, and stepwise discriminant analysis, were used to test the efficacy of 17 community metrics. A general separation between the mountain ecoregions and the valley/plains ecoregions was determined to exist for the metrics. Two of the original eight metrics described in the EPA's RBPs for benthic macroinvertebrates were found to be highly variable and unreliable as measures of biological conditions in some ecoregions. Eleven metrics were determined as being valuable in discriminating between montane and valley/plains groupings of ecoregions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.