Elastic stable intramedullary nailing (ESIN) is generally acknowledged to be the treatment of choice for displaced diaphyseal femoral fractures in children over the age of three years, although complication rates of up to 50% are described. Pre-bending the nails is recommended, but there are no published data to support this. Using synthetic bones and a standardised simulated fracture, we performed biomechanical testing to determine the influence on the stability of the fracture of pre-bending the nails before implantation. Standard ESIN was performed on 24 synthetic femoral models with a spiral fracture. In eight cases the nails were inserted without any pre-bending, in a further eight cases they were pre-bent to 30° and in the last group of eight cases they were pre-bent to 60°. Mechanical testing revealed that pre-bending to 60° produced a significant increase in the stiffness or stability of the fracture. Pre-bending to 60° showed a significant positive influence on the stiffness compared with unbent nails. Pre-bending to 30° improved stiffness only slightly.These findings validate the recommendations for pre-bending, but the degree of pre-bend should exceed 30°. Adopting higher degrees of pre-bending should improve stability in spiral fractures and reduce the complications of varus deformity and shortening.
Background: Until recently, no study had compared the quality of life of persons with transfemoral amputation treated with osseointegration to socket prosthesis users. Objectives: Comparison of quality of life in two types of prostheses users: a cohort of patients with osseointegration and patients equipped with a socket prosthesis who were group-matched for age, body mass index and mobility grade. Study design: A cross-sectional study that compared Methods: The quality of life of 39 participants (22 in the osseointegration group and 17 in the socket prosthesis group) was measured using the Questionnaire for Persons with Transfemoral Amputation (Q-TFA) and European Questionnaire 5-dimension 3-level (EQ-5D-3L) surveys. Results: Compared with the socket prosthesis group, the osseointegration group had a significantly higher ‘Global’ score ( p = 0.022) and a significantly lower ‘Problem’ score ( p < 0.001) of the Q-TFA. The ‘Mobility’ ( p = 0.051) and ‘Use’ scores ( p = 0.146) of the Q-TFA, the EQ-5D-3L index ( p = 0.723), and EQ-5D visual analog scale ( p = 0.497) showed no significant differences between groups. Conclusions: Patients with osseointegration experienced less prosthesis-associated problems than socket prosthesis users and had a higher prosthesis-associated quality of life when assessed with the Q-TFA. General quality of life, as assessed with the EQ-5D-3L, was not different between groups.
Cortical pores are determinants of the elastic properties and of the ultimate strength of bone tissue. An increase of the overall cortical porosity (Ct.Po) as well as the local coalescence of large pores cause an impairment of the mechanical competence of bone. Therefore, Ct.Po represents a relevant target for identifying patients with high fracture risk. However, given their small size, the in vivo imaging of cortical pores remains challenging. The advent of modern high-resolution peripheral quantitative computed tomography (HR-pQCT) triggered new methods for the clinical assessment of Ct.Po at the peripheral skeleton, either by pore segmentation or by exploiting local bone mineral density (BMD). In this work, we compared BMD-based Ct.Po estimates with high-resolution reference values measured by scanning acoustic microscopy. A calibration rule to estimate local Ct.Po from BMD as assessed by HR-pQCT was derived experimentally. Within areas of interest smaller than 0.5 mm, our model was able to estimate the local Ct.Po with an error of 3.4%. The incorporation of the BMD inhomogeneity and of one parameter from the BMD distribution of the entire scan volume led to a relative reduction of the estimate error of 30%, if compared to an estimate based on the average BMD. When applied to the assessment of Ct.Po within entire cortical bone cross-sections, the proposed BMD-based method had better accuracy than measurements performed with a conventional threshold-based approach.
BackgroundElastic Stable intramedullary Nailing (ESIN) of dislocated diaphyseal femur fractures has become an accepted method for the treatment in children and adolescents with open physis. Studies focused on complications of this technique showed problems regarding stability, usually in complex fracture types such as spiral fractures and in older children weighing > 40 kg. Biomechanical in vitro testing was performed to evaluate the stability of simulated spiral femoral fractures after retrograde flexible titanium intramedullary nail fixation with and without End caps.MethodsEight synthetic adolescent-size femoral bone models (Sawbones® with a medullar canal of 10 mm and a spiral fracture of 100 mm length identically sawn by the manufacturer) were used for each group. Both groups underwent retrograde fixation with two 3.5 mm Titanium C-shaped nails inserted from medial and lateral entry portals. In the End Cap group the ends of the nails of the eight specimens were covered with End Caps (Synthes Company, Oberdorf, Switzerland) at the distal entry.ResultsBeside posterior-anterior stress (4.11 Nm/mm vs. 1.78 Nm/mm, p < 0.001), the use of End Caps demonstrated no higher stability in 4-point bending compared to the group without End Caps (anterior-posterior bending 0.27 Nm/mm vs. 0.77 Nm/mm, p < 0.001; medial-lateral bending 0.8 Nm/mm vs. 1.10 Nm/mm, p < 0.01; lateral-medial bending 0.53 Nm/mm vs. 0.86 Nm/mm, p < 0.001) as well as during internal rotation (0.11 Nm/° vs. 0.14 Nm/°, p < 0.05). During compression in 9°- position and external rotation there was no statistical significant difference (0.37 Nm/° vs. 0.32 Nm/°, p = 0.13 and 1.29 mm vs. 2.18 mm, p = 0.20, respectively) compared to the "classic" 2-C-shaped osteosynthesis without End Caps.ConclusionIn this biomechanical study the use of End Caps did not improve the stability of the intramedullary flexible nail osteosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.