In this paper, we develop a new disease-resistant mathematical model with a fraction of the susceptible class under imperfect vaccine and treatment of both the symptomatic and quarantine classes. With standard incidence when the associated reproduction threshold is less than unity, the model exhibits the phenomenon of backward bifurcation, where a stable disease-free equilibrium co-exists with a stable endemic equilibrium. It is then proved that this phenomenon vanishes either when the vaccine is assumed to be 100% potent and perfect or the Standard Incidence is replaced with a Mass Action Incidence in the model development. Furthermore, the model has a unique endemic and disease-free equilibria. Using a suitable Lyapunov function, the endemic equilibrium and disease free equilibrium are proved to be globally-asymptotically stable depending on whether the control reproduction number is less or greater than unity. Some numerical simulations are presented to validate the analytic results.
We develop a virus-resistant HIV-1 mathematical model with behavioural change in HIV-1 resistant non-progressors. The model has both disease-free and endemic equilibrium points that are proved to be locally asymptotically stable depending on the value of the associated reproduction numbers. In both models, a non-linear Goh{Volterra Lyapunov function was used to prove that the endemic equilibrium point is globally asymptotically stable for special case while the method of Castillo-Chavez was used to prove the global asymptotic stability of the disease-free equilibrium point. In both the analytic and numerical results, this study shows that in the context of resistance to HIV/AIDS, total abstinence can also play an important role in protection against this notorious infectious disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.