Protozoan parasites of the phylum Apicomplexa contain three genetic elements: the nuclear and mitochondrial genomes characteristic of virtually all eukaryotic cells and a 35-kilobase circular extrachromosomal DNA. In situ hybridization techniques were used to localize the 35-kilobase DNA of Toxoplasma gondii to a discrete organelle surrounded by four membranes. Phylogenetic analysis of the tufA gene encoded by the 35-kilobase genomes of coccidians T. gondii and Eimeria tenella and the malaria parasite Plasmodium falciparum grouped this organellar genome with cyanobacteria and plastids, showing consistent clustering with green algal plastids. Taken together, these observations indicate that the Apicomplexa acquired a plastid by secondary endosymbiosis, probably from a green alga.
The NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas) is a FAIR knowledgebase providing detailed, structured, standardised and interoperable genome-wide association study (GWAS) data to >200 000 users per year from academic research, healthcare and industry. The Catalog contains variant-trait associations and supporting metadata for >45 000 published GWAS across >5000 human traits, and >40 000 full P-value summary statistics datasets. Content is curated from publications or acquired via author submission of prepublication summary statistics through a new submission portal and validation tool. GWAS data volume has vastly increased in recent years. We have updated our software to meet this scaling challenge and to enable rapid release of submitted summary statistics. The scope of the repository has expanded to include additional data types of high interest to the community, including sequencing-based GWAS, gene-based analyses and copy number variation analyses. Community outreach has increased the number of shared datasets from under-represented traits, e.g. cancer, and we continue to contribute to awareness of the lack of population diversity in GWAS. Interoperability of the Catalog has been enhanced through links to other resources including the Polygenic Score Catalog and the International Mouse Phenotyping Consortium, refinements to GWAS trait annotation, and the development of a standard format for GWAS data.
The widespread use of gold nanoparticles (GNPs) as labels in diagnostics and detection is due to a unique combination of chemical and physical properties that allow biological molecules to be detected at low concentrations. In this critical review detection methods based on GNPs are divided up and discussed based on the way in which signals are generated in response to specific target molecules. Particular attention is devoted to methods that allow target molecules to be detected with the unaided eye because these, more than any other, harness the full range of properties that make GNPs unique. Methods that are discussed include those in which specific target molecules induce a visible colour change, chromatographic methods that allow non-specialized users to perform sophisticated tests without additional equipment and methods in which trace amounts of GNPs are rendered visible to the unaided eye by catalytic deposition of a metal such as silver. The use of metal deposition as a means of enhancing the signal for optical and electrical detection is also reviewed. The other detection methods included in this review are based on interactions between GNPs and molecules located in close proximity to their surface. These include methods in which light emission from such molecules is enhanced (surface enhanced Raman scattering) or quenched (fluorescence), and methods in which the accumulation of specific target molecules induce subtle changes in the extinction spectra of GNPs that can be followed in real time with inexpensive equipment (166 references).
The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay -these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions.Experiments carried out over the past half century have revealed that neutrinos are found in three states, or flavors, and can transform from one flavor into another. These results indicate that each neutrino flavor state is a mixture of three different nonzero mass states, and to date offer the most compelling evidence for physics beyond the Standard Model. In a single experiment, LBNE will enable a broad exploration of the three-flavor model of neutrino physics with unprecedented detail. Chief among its potential discoveries is that of matter-antimatter asymmetries (through the mechanism of charge-parity violation) in neutrino flavor mixing -a step toward unraveling the mystery of matter generation in the early Universe. Independently, determination of the unknown neutrino mass ordering and precise measurement of neutrino mixing parameters by LBNE may reveal new fundamental symmetries of Nature.Grand Unified Theories, which attempt to describe the unification of the known forces, predict rates for proton decay that cover a range directly accessible with the next generation of large underground detectors such as LBNE's. The experiment's sensitivity to key proton decay channels will offer unique opportunities for the ground-breaking discovery of this phenomenon.Neutrinos emitted in the first few seconds of a core-collapse supernova carry with them the potential for great insight into the evolution of the Universe. LBNE's capability to collect and analyze this high-statistics neutrino signal from a supernova within our galaxy would provide a rare opportunity to peer inside a newly-formed neutron star and potentially witness the birth of a black hole.To achieve its goals, LBNE is conceived around three central components: (1) a new, highintensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a fine-grained near neutrino detector installed just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is ∼1,300 km from the neutrino source at Fermilab -a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions.With its exceptional combi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.