Corings and comodules are fundamental algebraic structures, which can be thought of as both dualisations and generalisations of rings and modules. Introduced by Sweedler in 1975, only recently they have been shown to have far reaching applications ranging from the category theory including differential graded categories through classical and Hopf-type module theory to non-commutative geometry and mathematical physics. This is the first extensive treatment of the theory of corings and their comodules. In the first part, the module-theoretic aspects of coalgebras over commutative rings are described. Corings are then defined as coalgebras over non-commutative rings. Topics covered include module-theoretic aspects of corings, such as the relation of comodules to special subcategories of the category of modules (sigma-type categories), connections between corings and extensions of rings, properties of new examples of corings associated to entwining structures, generalisations of bialgebras such as bialgebroids and weak bialgebras, and the appearance of corings in non-commutative geometry.
No abstract
Abstract. The purpose of this paper is to develop a theory of bimonads and Hopf monads on arbitrary categories thus providing the possibility to transfer the essentials of the theory of Hopf algebras in vector spaces to more general settings. There are several extensions of this theory to monoidal categories which in a certain sense follow the classical trace. Here we do not pose any conditions on our base category but we do refer to the monoidal structure of the category of endofunctors on any category A and by this we retain some of the combinatorial complexity which makes the theory so interesting. As a basic tool we use distributive laws between monads and comonads (entwinings) on A: we define a bimonad on A as an endofunctor B which is a monad and a comonad with an entwining λ : BB → BB satisfying certain conditions. This λ is also employed to define the category A B B of (mixed) B-bimodules. In the classical situation, an entwining λ is derived from the twist map for vector spaces. Here this need not be the case but there may exist special distributive laws τ : BB → BB satisfying the Yang-Baxter equation (local prebraidings) which induce an entwining λ and lead to an extension of the theory of braided Hopf algebras.An antipode is defined as a natural transformation S : B → B with special properties and for categories A with limits or colimits and bimonads B preserving them, the existence of an antipode is equivalent to B inducing an equivalence between A and the category A
The theory of linear codes over finite fields has been extended by A. Nechaev to codes over quasi-Frobenius modules over commutative rings, and by J. Wood to codes over (not necessarily commutative) finite Frobenius rings. In the present paper we subsume these results by studying linear codes over quasi-Frobenius and Frobenius modules over any finite ring. Using the character module of the ring as alphabet we show that fundamental results like MacWilliams' theorems on weight enumerators and code isometry can be obtained in this general setting.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.